
TIF 150: Information theory for complex systems

Time: March 14, 2014, 14.00-18.00
Allowed material: Calculator (type approved accordingly to Chalmers rules).
Teacher (available during exam): Kristian Lindgren (7723131)
Examiner: Kristian Lindgren

All answers and derivations must be clear and well motivated.
Grade limits: 25p for 3, 34p for 4, 42p for 5. Points from homework problems and project may be 
included, but a minimum of 20p is required on the written exam.
The results will be available on April 4.

1. Finding the deviating ball 8p
You have 13 almost identical balls. The only difference between them is that one of them have a 
slightly deviating weight, it could be heavier, or lighter. You are tasked to find which of the balls 
that deviates, with only the means of a balance scale (that tips to the side with the heaviest load, or 
remains in balance if the two sides are of equal weight) and three measurements.

a) How large is the entropy of the system? How large is the entropy of which of the 13 balls that 
deviates?

b) Assuming ideal measurements, how many measurements would you need at least to find the 
deviating one?

c) Find a procedure to identify the deviating ball using a balance scale and only three 
measurements. You need only to describe the procedure assuming the worst case outcome for 
each measurement (the most probable outcome), i.e. not all possible branches of measurements.

2. Rubber band. 10p
A well known elasticity model for rubber bands is a one dimensional system of cells/parts that can 
either be contracted or extended. The contracted elements can be called C and the extended ones 
can be called E. Let the extended ones contribute with -J to the total energy of the system and have 
length a, the contracted ones have length a/2 and contribute with 0 to the total energy. If the 
average length is L, what is the equilibrium distribution (You may give the answer as a function of 
temperature)? What happens if you heat a rubberband?



3. CA information. 8p
Consider a one-dimensional cellular automaton given by rule 238 (100 and 000 maps to 0, the rest 
to 1). Let the initial state be characterized by the following finite state automaton (where it is 
assumed that if two arcs leave the same node, they have equal probabilities).

a) What is the initial entropy (at t=0)?
b) Derive the finite state automaton that characterizes the CA state after one time step (t=1).
c) What is the entropy at (t=1)? At (t=infinity)?

4. Correlation complexity. 12p
Below are a hidden Markov model, when two arcs leave a node it is assumed that they have the 
same probability. 

 
a) How long correlations (in information theoretical terms) are present in the system?

b) Determine the correlation complexity.
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5. Chaos and information. 12p
Let a piecewise linear map be defined by the figure below, where a <1 and where the mapping is 
determined by:

  

Consider the dynamic system given by

a) Start with a close to 0 and let a increase. Determine whether there is a stable fix point, stable 
periodic orbit (you don’t have to find the periodicity) or chaos. At what value for a  is there a 
change to the dynamical characteristics?

b) Suppose that a = 1/3. Determine the invariant measure that characterizes the chaotic behavior, 
and calculate the Luyapunov exponent. Find a partition that is generating, and calculate the 
measure entropy from the symbolic dynamics.
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xt+1 = f(xt)
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f(0) = 2/3, f(1/3) = 0, f(1/3+) = 1/3, f(2/3) = 1f(2/3+) = 0, f(1) = a



Information theory for complex systems – useful equations 
 
Basic quantities 
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Max entropy formalism (with k + 1 constraints) using the Lagrangian L 
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Symbol sequences 
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Geometric information theory 
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Chemical systems and information flow 
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Chaos and information 
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