
TIF 150: Information theory for complex systems  
 
Time: August 26, 2013, 12.00 – 16.00. 
Place: Swedish Embassy, Teheran 
Allowed material: Calculator 
Teacher and examiner: Kristian Lindgren (+46-707574031) 
 
All answers and derivations must be clear and well motivated.  
Grade limits: 25p for 3, 34p for 4, and 42p for 5. 
ECTS grades: 25p for E, 28p for D, 34p for C, 38p for B, 42p for A. 
The results will be available on September 5.  
 

 
 

1. Ball measurements.  
Assume you have 3 pairs of balls, each of a different color: 6 in total with 2 blue, 2 red and 2 
green. In each pair, one of the balls is heavy and the other is light (you don’t know which is 
which). The 3 heavy balls weigh the same, and the three light balls weigh the same. You have 
at your disposal a balance scale.  
  

(a) According to information theory, what is the Shannon entropy of the system? How 
much information would you get from an ideal measurement with the scale? Discuss 
briefly what conclusions can be drawn from these quantities. 

(b) Find a procedure for finding out the weight of all the balls using as few measurements 
as possible. 

 
  (10 p) 
 
 
 
2. An equilibrium spin system. Consider a one-dimensional spin system where each site 

can be occupied by either ↑ or ↓: 
  
  

…   ↑ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↑ …    spin system 
… ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ …    external field 

 
 The system is under influence of an alternating (in space) external field so that the field at 

a site is the opposite of its neighbours field. If a spin is aligned with the local external 
field direction, this constitutes an energy contribution of –J / 2 < 0 to the total energy of 
the system, if the spin and the field is opposed, the energy contribution is +J / 2 > 0. 
Additionally, neighbouring spins also interact, with an energy contribution of –J if the 
two spins are aligned, and +J if they are opposed. If the average energy is u, what is the 
equilibrium distribution? Or, in other words, what are the probabilities over sequences of 
symbols that characterise the system? You need not to solve the equations but you should 
set up the equations that determine the solution. You may keep the inverse temperature 
instead of energy. Discuss how the system looks like in the limit of zero temperature.
 (10 p) 

 



3. CA information.  
 Consider a one-dimensional cellular automaton given by elementary rule R50, i.e., 

neighbourhoods 100, 101and 001 map to 1, but all others to 0. Let the initial state be 
characterized by the following finite state automaton (where it is assumed that if two arcs 
leave the same node they have equal probabilities) 

   

  

 

0 

0 0 

1 

 
 
  
 (a) What is the initial entropy (at t = 0)? Derive the finite state automaton that 

characterizes the CA state after one time step (t = 1). What is the entropy at this time?  
 
 (b) What is the entropy at t = 2? 
 
 (c) What does the entropy converge to in the t=infinity limit?  
 
  (11 p) 
 
 
 
 
4. Correlation complexity. Below is a hidden Markov model. When two arcs leave a node 

it is assumed that they have the same probability. Determine the correlation complexity 
η. 

  
  
 
 
 
 
 
 
 
 (11 p) 
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5. Chaos and information. Let a piecewise linear map f(x) be defined by the figure below,  
where the mapping is determined by f(0) = f(1/2) = 0,  f(1/4) = 1,  f(1)= 1/8. 
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 f(x) 

x 1/2 1/4 
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Consider the dynamical system 
 
  xt+1  =  f(xt) .  
   
 (ii ) Determine the invariant measure that characterizes the chaotic behaviour, and from this 

calculate the Lyapunov exponent λ. Find a partition that is generating, and calculate the 
measure entropy from the symbolic dynamics. 

 
  (8 p) 



Information theory for complex systems – useful equations 
 
Basic quantities 
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Max entropy formalism (with k + 1 constraints) using the Lagrangian L 
 

  

€ 

L p1,…,pn ,λ1,…,λr,µ( ) = S[P] + λk Fk − pi fk (i)
i=1

n

∑
% 

& 
' 

( 

) 
* 

k=1

r

∑ + µ −1( ) 1− pi
i=1

n

∑
% 

& 
' 

( 

) 
*  , 

€ 

p j = exp −µ − λk fk ( j)
k=1

r

∑
% 

& 
' 

( 

) 
* ,  

€ 

µ(λ) = ln exp(−
j=1

n

∑ λk
k
∑ fk ( j)),  

€ 

∂µ(λ)
∂λk

= −Fk  

 
Symbol sequences 
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Geometric information theory 
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Chemical systems and information flow 
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Chaos and information 
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