
TIF 150: Information theory for complex systems  
 
Time: March 12, 2010, 14.00 – 18.00. 
Allowed material: Calculator (type approved according to Chalmers rules). 
Teacher and examiner: Kristian Lindgren (772 3131) 
 
All answers and derivations must be clear and well motivated.  
Grade limits: 25p for 3, 34p for 4, and 42p for 5. 
ECTS grades: 25p for E, 28p for D, 34p for C, 38p for B, 42p for A. 
The results will be available on March 26.  
 

 
 

1. Balance measurements.  
 Assume you have 6 balls of which 2 are slightly heavier than the others, with an 

additional weight of 1% and 2%, respectively. You have at your disposal three balance 
measurements to find out which are the two heavy ones. Find such a procedure by using 
an information-theoretic approach. Answer also the following questions: 

 
 (a) What is the initial uncertainty (entropy)? Compare this with how much information 

you could gain from three ideal measurements.  
 (b) Is there a procedure that always determines the two heavy ones and sorts out which is 

the heaviest among the two? 
  (9 p) 
 
 
 
2. An equilibrium spin system. Consider a one-dimensional lattice system where each site 

can be occupied by a particle, either ⊗ or ⊕, or be empty –  
 

. . .  ⊗ ⊗ – – ⊕ ⊕ ⊕ ⊗ ⊕ – ⊗ ⊗ – . . . 
 
 There is a local contribution to the energy, being –J < 0 when two neighbouring particles 

are of the same type, and +J when they are different. There is no interaction energy when 
the neighbouring site is empty. The average particle density is 1/3 for each particle type. 
If the average energy is u, what is the equilibrium distribution? Or, in other words, what 
are the probabilities over sequences of symbols that characterise the system? (You may 
give the answer as a function of temperature instead of energy.) What are the 
probabilities in the limit of zero temperature? 

 (9 p) 
 



3. CA information.  
 Consider a one-dimensional cellular automaton given by elementary rule R124, i.e., 

neighbourhoods 111, 001 and 000 map to 0, but all others to 1. Let the initial state be 
characterized by the following finite state automaton (where it is assumed that if two arcs 
leave the same node they have equal probabilities) 

   

   
 
  
 (a) What is the initial entropy (at t = 0)? Derive the finite state automaton that 

characterizes the CA state after one time step (t = 1). What is the entropy at this time?  
 
 (b) What is the entropy at t = 2?  
 
  (10 p) 
 
 
 
 
4. Correlation complexity. Below are three hidden Markov models, (a, b, and c). When 

two arcs leave a node it is assumed that they have the same probability. Determine the 
correlation complexity η for all three.  

  
  

  
   (a) (b) (c) 
 
 
  (10 p) 
 
 



5. Chaos and information. Let a piecewise linear map f(x) be defined by the figure below, 
where 1/4 < a < 1, and where the mapping is determined by f(0) = f(1/2) = 1/4, f(1/4) = a, 
and f(1) = 0. 

   

   
   (i) (ii) 
 
 Consider the dynamical system 
 
  xt+1  =  f(xt) .  
   
 (i) Start with a close to 1/4 and investigate how the dynamics changes when a is 

increased. Determine whether there is a stable fixed point, stable periodic orbit, or chaos. 
What are the critical values for a (for which there is a change in dynamical 
characteristics)?  

 
 (ii) Suppose now that a = 1. Determine the invariant measure that characterizes the 

chaotic behaviour, and calculate the Lyapunov exponent λ. Find a partition that is 
generating, and calculate the measure entropy from the symbolic dynamics. 

 
  (12 p) 



Information theory for complex systems – useful equations 
 
Basic quantities 
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Max entropy formalism (with k + 1 constraints) using the Lagrangian L 
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Symbol sequences 
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Geometric information theory 
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Chemical systems and information flow 
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Chaos and information 
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