
TIF 150: Information theory for complex systems  
 
Time: March 13, 2009, 14.00 – 18.00. 
Allowed material: Calculator (type approved according to Chalmers rules). 
Teacher: Johan Nyström (7723130) 
Examiner: Kristian Lindgren 
 
All answers and derivations must be clear and well motivated.  
Grade limits: 25p for 3, 34p for 4, and 42p for 5. 
ECTS grades: 25p for E, 28p for D, 34p for C, 38p for B, 42p for A. 
The results will be available on March 27.  
 

 
 

1. Balance measurements.  
 Assume you have 5 balls of which 3 are of equal weight but different from the remaining 

2 of which one is 1% heavier and one is 1% lighter. You have at your disposal three 
balance measurments to find out which are the normal, the light, and the heavy ones. Find 
such a procedure by using an information-theoretic approach. Answer the following 
questions. 

 
 (a) What is the initial uncertainty (entropy)? Compare this with how much information 

you could gain from three ideal measurements. 
(b) What is the worst case outcome of your first measurement? Quantify this by 
calculating the uncertainty that remains. 
(c) For the complete procedure, identifying all balls in three measurements, it would be 
enough if you show that the worst case always works. (Worst case means that you get the 
outcome of a balance measurement where there are the most possibilities left, i.e., the 
remaing entropy is the highest.) 

  (9 p) 
 
 
 
2. An equilibrium spin system. Consider a one-dimensional infinite sequence of states, A, 

B, and C, where a microstate can be illustrated as 
 

… A B C A C B A B A B C C B … 
 
 There is a local contribution to the energy, being –J when two neighbouring states are 

different, and 0 when they are the same. If the average energy is u, what is the 
equilibrium distribution? Or, in other words, what are the probabilities over sequences of 
symbols that characterise the system? (You may give the answer as a function of 
temperature instead of energy.) What are the probabilities in the limit of zero 
temperature? 

 (9 p) 
 



3. CA information.  
 Consider a one-dimensional cellular automaton given by elementary rule R252, i.e., 

neighbourhoods 000 and 001 map to 0, but all others to 1. Let the initial state be 
characterised by the following finite state automaton (where it is assumed that the arcs 
leaving the top right node have equal probabilities) 

   

   
 
  
 (a) What is the initial entropy (at t = 0)? Derive the finite state automaton that 

characterizes the CA state after one time step (t = 1). What is the entropy at this time?  
 
 (b) What is the entropy at t = 2 and t = 3?  
 
  (10 p) 
 
4. Change of chemical information in an open system.  
 Show that, for an open chemical system (in contact with a reservoir), the change of 

chemical information is determined by the information flow towards smaller length scales 
jr at the worst level of resolution (r → ∞), and the inflow of chemical information jchem, 
where we define 

 

! 

jchem (t) = bi(ci, res " c i(t))ln
c i(t)

ci0i

#  

 
 where ci,res is the concentration in the reservoir. 
 
 Assume, as we have done in the course, that we have reaction-diffusion dynamics (see 

equations sheet) with periodic boundary conditions at x=0 and x=L, and that 
concentrations are normalised at every position, i.e., Σi ci(x, t) = 1. 

  (10 p) 
 
 



5. Chaos and information. Let a piecewise linear mapping f(x) be defined by the figure 
below, where 1/4 < a < 1, and where the mapping is determined by f(0) =  f(1/4) =  
= f(1/2) = 3/4, f(1/8) = 1,  f(3/8) = 1/2,  f(1/2+) = f(3/4) = 1/4,  f(5/8) = 0, and f(1) = a. 

   

   
 
 Consider the dynamical system 
 
  xt+1  =  f(xt) .  
   
 Starting with a close to 1/4 and increasing that value, at what value of a does the system 

become chaotic? What is the dynamic behaviour of the system for a lower than this 
value? 

 
 Suppose now that a = 3/4. Determine the invariant measure that characterizes the chaotic 

behaviour, and calculate the Lyapunov exponent λ. Find a partition that is generating, and 
calculate the measure entropy from the symbolic dynamics. 

 
 If you know that the system is in the region x < 1/4 at time t, how much information do 

you get if you observe the system in the same region again at time t+4? 
 
  (12 p) 



Information theory for complex systems – useful equations 
 
Basic quantities 
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Max entropy formalism (with k + 1 constraints) using the Lagrangian L 
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Symbol sequences 
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Geometric information theory 
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Chemical systems and information flow 
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Chaos and information 
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Algorithmic information 
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