Home assignments 2, Gravitation \& Cosmology, 2008

To be handed in Friday, December 12

1. In the Schwarzschild geometry, which circular orbits are lightlike geodesics?
2. Consider a spherically symmetric and static solution of Einstein's equations in three space-time dimensions, describing a point particle with mass M. Give the explicit solution. Is this space-time flat? Will there be gravitational lensing?
3. Solve one of the two following problems:
a. Consider a toroidal surface embedded in flat three-dimensional euclidean space. With (ρ, ϕ, z) being standard cylindrical coordinates and a / b being the radius of the torus/tube, it can be parametrised as $(\rho, \phi, z)=(a+b \cos \theta, \phi, b \sin \theta)$. Calculate the curvature scalar. Comment on the sign of R for different points on the torus. Finally, determine all Killing vectors in this space.
b. A space-time is described by the metric

$$
d s^{2}=-\left(1-\frac{r^{2}}{a^{2}}\right) d t^{2}+\frac{d r^{2}}{1-\frac{r^{2}}{a^{2}}}+r^{2} d \Omega_{D-2}^{2}
$$

where $d \Omega_{D-2}^{2}$ is the metric for a unit ($D-2$)-sphere. How many isometries does this space-time have? Comments?

