Home assignments 1, Gravitation \& Cosmology, 2008

To be handed in Friday, November 21

1. Show that the invariant integration measure is $d^{4} x \sqrt{|\operatorname{det} g|}$, i.e., that

$$
\int d^{4} x \sqrt{|\operatorname{det} g|} \Phi(x)
$$

is independent of the choice of coordinates when Φ is a scalar. Give the integration measure for 2 - and 3 -dimensional euclidean space in polar and spherical coordinates. Show also that

$$
\frac{1}{24} \int d^{4} x \epsilon^{\mu \nu \kappa \lambda} \Psi_{\mu \nu \kappa \lambda}(x)
$$

is invariant, where Ψ is a tensor which is antisymmetric in all four indices.
2. Construct the Laplacian (in the case of euclidean signature) / the wave operator (in the case of lorentzian signature), acting on a scalar, from covariant derivatives, and give an explicit form in terms of derivatives and the affine connection.

As an alternative, one may consider the action for a massless scalar field,

$$
S=-\frac{1}{2} \int d^{4} x \sqrt{-g} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi
$$

(g denotes the determinant of $g_{\mu \nu}$), whose variation will give the wave equation. Show that this gives the same equation as the construction with covariant derivatives.

Calculate the Laplacian on S^{2} and compare it to the known explicit expression for the square of the angular momentum in three dimensions (used e.g. when separating variables in the solution of the wave function of the hydrogen atom).
3. Show that the tensor $T^{\mu \nu}$, defined from the action for a scalar field in the previous exercise as $T^{\mu \nu}(x)=\frac{1}{\sqrt{|\operatorname{det} g|}} \frac{\delta S}{\delta g_{\mu \nu}(x)}$, identically satisfies $D_{\nu} T^{\mu \nu}=0$. Give a physical interpretation of $T^{\mu \nu}$ and of the differential equation.
4. As an example of a space with constant negative curvature, take the simplest example, the two-dimensional "Poincaré disk". Its metric can be written as

$$
d s^{2}=\frac{d r^{2}+r^{2} d \phi^{2}}{\left(1-\frac{r^{2}}{a^{2}}\right)^{2}},
$$

where $0 \leq r<a$ and $0 \leq \phi<2 \pi$ (ϕ is an angle). What is the distance from a point with coordinates (r, ϕ) to the "boundary" $r=a$? Calculate the curvature tensor, the Ricci tensor and the curvature scalar. Compare to the corresponding results for a two-dimensional sphere.

