Exam in **RRY125/ASM510 Modern astrophysics**

Tid: 16 december 2013, kl. 08.30–12.30 *Plats:* V-salar, Chalmers *Ansvarig lärare:* Magnus Thomasson ankn. 8587 (lärare besöker tentamen ca. kl.09.00 och 11.00)

Tillåtna hjälpmedel:

- Typgodkänd räknedosa, eller annan räknedosa med nollställt minne
- Physics Handbook, Mathematics Handbook
- bifogat formelblad
- ordlista (ej elektronisk)

You may use:

- Chalmers-approved calculator, or other calculator with cleared memory
- Physics Handbook, Mathematics Handbook
- enclosed sheet with formulae
- dictionary (not electronic)

Grades:

The maximum number of points is 30.

Chalmers: Grade 3 requires 12 p, grade 4 requires 18 p, grade 5 requires 24 p. GU: Grade G requires 12 p, grade VG requires 21 p.

Note: Motivate and explain each answer/solution carefully.

This page is intentionally blank.

1.

Choose the most reasonable of the given values for the following (do not give a motivation):						
(a) Surface pressure at Mars (Earth = 1):	A) 100,	B) 2,	C) 0.5,	D) 0.01		
(b) Size of the nucleus of a comet:	A) 10 km,	B) 1 AU,	C) 10 m,	D) 1 ly		
(c) Age of planet Venus	A) 500 Myr,	B) 13 Myr,	C) 4 Gyr,	D) 13 Gyr		
(d) Diameter of a red giant (ly=light year):	A) 1 lyU,	B) 1 AU,	C) 10^5 km,	D) 1 pc		
(e) Central temperature of a main sequence	star of spectral	class M:				
	A) 10 ⁹ K,	B) $6 \cdot 10^7$ K	, C) 9·10 ⁶ K,	D) 3000 K		
(f) Distance to a quasar (ly=light year):	A) 10^{10} ly,	B) 10 ⁷ AU,	C) 20 kpc,	D) 13 Gpc		
(g) Density parameter $\Omega_{M,0}$ (matter) for the	present cosmol	logical mode	el:			
	A) 0.04,	B) 0.3,	C) 0.7,	D) 1.0		
(h) Redshift of the Last Scattering Surface	A) 0	B) 2.735	C) 6	D) 1100		
				(4 p)		

2.

A result from radiative transfer theory for stellar atmospheres is the following: $I_{\nu}(0,1) \approx B_{\nu}(\tau_{\nu} = 1)$, where I_{ν} is a function of τ_{ν} and of $\mu = \arccos(\theta)$, and *B* is Planck's law. Use this result to explain the formation of absorption lines in stellar spectra. (2 p)

3.

a.) Draw a Hertzsprung-Russel (HR) diagram. Label each axis in two different ways and mark the positions of different types of stars. (2 p)

b.) Describe how you can use an HR diagram to determine age and distance to a globular cluster in the Milky Way.
 (2 p)

4.

A spiral galaxy is observed to have a redshift corresponding to a velocity of 720 km/s and an apparent magnitude of 9. What is its absolute magnitude? Assume that the galaxy consists of only Sun-like stars. How many stars does it contain? (2 p)

5.

The relativistic equation of state for a degenerate electron gas is $P = K_2 \rho^{4/3}$, where $K_2 = \frac{1.24 \cdot 10^{10}}{\mu_e^{4/3}}$ (and $\mu_e = \frac{2}{1+X}$, where X is the hydrogen mass fraction).

a.) Make a very *crude ("order of magnitude") estimate* of the mass of a star composed of such matter. (2 p)

b.) What type of star is it? What happens if such a star attracts more mass from a companion, and why is that process important for cosmology? (2 p)

6.

Assume that you have discovered a planetary system where the most massive planet is a Saturn-sized planet in circular orbit (radius 8 AU) around a Sun-like star.

a.) What is the maximum Doppler shift of the Calcium H line (396.847 nm)? (1 p)

b.) How far from the centre of the star is the centre of mass of the system? (1 p)

7.

Explain the meaning of the "Horizon problem" in modern cosmology and how it is resolved. (1 p)

8.

Give an example of supportive evidence for the "unification theory" for active galactic nuclei (AGNs). Give also one example of why the unification theory can not explain all of the observed variety in AGN-types. (2 p)

9.

Derive *Friedmann's equation* using Newtonian physics plus the result from general relativity that the energy per unit mass is $E = -kc^2/2$. Explain very briefly what k is. (Neglect Λ .)

Then solve Friedmann's equation (i.e., find a(t)) for the time *before* matter-radiation equality. (Make a reasonable simplification of Friedmann's equation first, and explain why you do it, and make a reasonable assumption of how the density depends on the scale factor.) (5 p)

10.

A star (5 solar masses) has started to evolve away from the main sequence (MS). When the star arrives at its nect destination in the HR diagram it has a surface temperature of 5000 K and is shining at 5% of its Eddington luminosity. Estimate the Kelvin-Helmholtz timescale for star. It would typically take the star 350 000 years to make the transition away from the MS - can you give a brief explanation to why your result differs from this? (4 p)

Astrophysics equations, constants and units

Binary stars, planet+star, etc.

 $m_1r_1 = m_2r_2$ and $m_1V_1 = m_2V_2$ centre of mass $a = a_1 + a_2$ semi-major axis of relative orbit $\frac{a^3}{P^2} = \frac{G(m_1 + m_2)}{4\pi^2}$ Keplers 3rd law (for the relative orbit) $V = V_0 \sin i$ observed velocity $V_0 = \frac{2\pi a}{P}$ velocity of circular orbit

Radiation, magnitudes, luminosities, etc.

$$v = \frac{v}{3} \cdot \frac{1}{(e^{-v/} - 1)} [m^{-3} Hz^{-1}]$$

$$v = \frac{v^{3}}{3} \cdot \frac{1}{(e^{-v/} - 1)} [Jm^{-3} Hz^{-1}]$$

$$v = \frac{v}{3} \cdot \frac{1}{(e^{-v/} - 1)} [Jm^{-3} Hz^{-1}]$$

$$v = \frac{v}{3} \cdot \frac{1}{(e^{-v/} - 1)} [Wm^{-2} Hz^{-1}]$$

$$I \approx v + 10^{-4} [Wm^{-2}]$$

$$I_{v} = \frac{2 - v^{3}}{1 + (e^{-v/} - 1)} [Wm^{-2} Hz^{-1} sr^{-1}]$$

$$v = \frac{v}{1 + 1} \cdot \frac{v}{1 + (1 - v)}$$

$$v = \frac{v}{1 + 1} \cdot \frac{v}{1 + (1 - v)}$$

$$v = \frac{v}{1 + 1} \cdot \frac{v}{1 + (1 - v)}$$

- $m = -2,5 \lg \frac{F}{F_0}$ m = apparent magnitude, F = observed flux $m M = 5 \lg \frac{d}{10 \text{ pc}} + A$ M = absolute magnitude, d = distance, A = extinctionA = ada = interstellar extinction coefficient
- $F = \sigma T^4$ F = flux from surface, T = surface temperatureL = AFL = luminosity, A = emitting area

Stellar structure

 $\frac{P}{P} = -\frac{2\rho}{2}\rho$ $\frac{P}{P} = -\frac{2\rho}{2}\rho$ $\frac{P}{P} = -\frac{2\rho}{ac^{3}}\rho$ $\frac{P}{ac^{3}} = 1 - \frac{1}{p} - \frac{P}{p}$

Cosmology

	= 0					Η	ubble	e's law		
1		= 1	-=	<u> </u>	$\frac{v}{v_0} = \frac{0}{s}$	re	dshif	Ì		
	2 =	$-c^2$	ł	a(t) ²	1	² (Ô	s²θ	²)	Robertson-Walker metric
	. <u> </u>	- =	$\frac{1}{3}\rho$	3		Fı	riedm	ann equ	ation	with cosmological constant

Miscellaneous

$\frac{v}{c} = \frac{\Delta \lambda}{\lambda_0}$	the Doppler effect
$d = \frac{R}{\pi}$	$R = 1 \text{ AU}, \pi = \text{parallax angle} (R = 1 \text{ and } [\pi] = "\text{ gives } d \text{ in pc})$
$E_{\rm kin} = \frac{mv^2}{2}$	kinetic energy
$E_{\rm pot} = -\frac{GMm}{R}$	potential energy for a point mass <i>m</i> orbiting a point mass <i>M</i>
$E_{\rm kin} = \frac{M(\Delta v)^2}{2}, E_{\rm pot} = -\frac{GM^2}{2R}$	(energies for an elliptical galaxy, with some
	definition of its radius <i>R</i> and velocity dispersion Δv)
$2E_{\rm kin} + E_{\rm pot} = 0$	the virial theorem
$V_c = \sqrt{\frac{GM}{R}}$	circular velocity
$\theta \approx 1.22 \frac{\lambda}{D}$	resolution of telescope
$(t) = _{0} - \frac{-}{1/2}^{2}$	radioactive decay
— = _{s ar} –	recombination and ionization equation
$\frac{4}{\cdot 10^{0}} \approx \frac{4}{200} / s$	()srrao
$\frac{4}{2 \cdot 10^{10}} \approx \frac{4}{200} / s$	(aracs)ora o
$= \frac{c}{1} \approx 1. \cdot 1\hat{\theta}^1 - \frac{c}{0}$	a) \approx 0000 \odot \odot (o

OS

Some mathematics

Constants and units

$G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
$= 5.67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
$=$, 2 0 34 J $\$$ 0
$k = 1, 0 0 {}^{2} 10 \mathrm{K}^{-1}$
1 parsec (1 pc) = 3.26 light years = $3.0857 \cdot 10^{16}$ m
$1 \text{ AU} = 1.496 \cdot 10^{11} \text{ m}$
$1 \text{ year} = 3.156 \cdot 10^7 \text{ s}$
1 $\operatorname{arcmin}(1') = 1^{\circ}/60$. 1 $\operatorname{arcsec}(1'') = 1^{\circ}/3600$.
HI rest frequency ("21 cm line" of atomic hydrogen): 1420.4 MHz
Absolute magnitude of the Sun: +4.8
The solar constant (1 AU from the Sun): 1371 W/m^2
$H_0 = 100h \text{ km s}^{-1} \text{ Mpc}^{-1}$. Use $h = 0.72$
<i>Masses:</i> Earth: $5.97 \cdot 10^{24}$ kg, Jupiter: $1.90 \cdot 10^{27}$ kg, Sun: $1.99 \cdot 10^{30}$ kg
<i>Radii:</i> Earth: 6378 km, Jupiter: 71398 km, Sun: $6.96 \cdot 10^5$ km.

131117 Modern astrophypics, tenta 16 december 2013 DaD bA OC BB OC FA gB 40 2) See tectbook, section 2.4.3 (1) V=H.d => d= V/H=720/72=10 Mpc $m - M = 5 lg \frac{d}{10pc} \implies M = m - 5 lg \frac{10 \cdot 10^6}{10} = 9 - 30 = -21$ The Sun at 10 Mpc: Ms = Ms + 5lg 10pc = 4.8+30 = 34.8 The galaxy, with N Sum-like stars: $M = -2.5 lg \overline{F_5} =$ = -2.5 lg $\frac{NF_5}{F_6} = -2.5 lg N - 2.5 lg \overline{F_5} = -2.5 lg N + M_5$ So: $9 = -2.5 lg N + 34.8 \Rightarrow N = 2.10^{10}$ 5) a) Simplify $\frac{dP}{dr} = -\frac{GH_r}{r^2}g \longrightarrow Roughly R = \frac{GH}{R^2}g$ Use $P = K_2 S$ and $S = H/(\frac{4\pi}{3}R^3)$. [or $S = H/R^3$] $= M = \left(\frac{K_2}{G}\right)^{3/2} \left(\frac{3}{4\pi}\right)^{1/2}$, $K_2 = \frac{1.24 \cdot 10^{10}}{M_2^{4/3}}$, $M_e = \frac{2}{1+X}$ Use X=0 [no hydrogen; other values 0-1 also du], me=2 =>K2 = 4.92.10° [SI] => M= 3.1020 kg = 0.15 Mo b) White dwarf. Supernova (Ja). Distance measurements. 9) See tectbook, section 10.4. I describes curvature Radiation dominated era: $S = S_{Ro} \left(\frac{a}{a}\right)^{T}$. kao (Density term larger than curvature term when a - 0), so Friedmann's equation: $\frac{a}{a^2} = \frac{8 \text{Tr} G}{3} \frac{G}{S_{\text{R}} o} \left(\frac{a_0}{a}\right) \implies \frac{da}{dt} = \sqrt{\frac{8 \text{Tr} G}{3} \frac{F_{\text{R}} o}{a_0} \frac{a^2}{a}} \implies \frac{1}{3}$ $= \int a da = \sqrt{\frac{8 \pi 6 \beta R_0}{3}} a_0^2 \int dt = a(t) = \left(\frac{32 \pi 6 \beta R_0}{3}\right)^{1/4} a_0 t^{1/2}$

- Please see the book for sample HR diagrams. Locate the positions of the Main Sequence, Grand, Super Grants, while dwards.
- b) Age: i dontify the utened in the HSr distance: Estimate apparent magnitudes of identificable stellar

Bla)

R

RL

- - Honizon problem: Opportie rocions of the Universe have not been in Contract with each other since be outside the Thorizonte, How can the Universe be homogeneous? Subtion: Inflation. Explain roby the inflation theory is the solation.
- 8) For example i tradio galaxies and 12505 + jet onlenkdom Seg 1 & Seg 2 + dust observer dure & Midden emilisten lines Superlumine motion
 - Evidence against Evolution different population of radro sources at different ratio powers. Toms properties change with uninosity
- 10.) From MS to Grants. Use find T the estimate R together with 5% of LEdd. This will give the final tradius and the total contraction energy. The KH time scale in the time potentice energy of released during contraction in the absence of nuclear reactions. This energy calleare as Eg/L 2 GM2 => t ~ 900 yrs.
 - why the abserbara? Only the He core corranses to