RRY125/ASM510 Modern astrophysics

Tid: 16 december 2013, kl. 08.30-12.30
Plats: V-salar, Chalmers
Ansvarig lärare: Magnus Thomasson ankn. 8587
(lärare besöker tentamen ca. kl.09.00 och 11.00)
Tillåtna hjälpmedel:

- Typgodkänd räknedosa, eller annan räknedosa med nollställt minne
- Physics Handbook, Mathematics Handbook
- bifogat formelblad
- ordlista (ej elektronisk)

You may use:

- Chalmers-approved calculator, or other calculator with cleared memory
- Physics Handbook, Mathematics Handbook
- enclosed sheet with formulae
- dictionary (not electronic)

Grades:

The maximum number of points is 30 .
Chalmers: Grade 3 requires 12 p, grade 4 requires $18 p$, grade 5 requires 24 p. GU: Grade G requires 12 p , grade VG requires 21 p .

This page is intentionally blank.

1.

Choose the most reasonable of the given values for the following (do not give a motivation):
(a) Surface pressure at Mars (Earth = 1):
A) 100 ,
B) 2 ,
C) 0.5 ,
D) 0.01
(b) Size of the nucleus of a comet:
A) 10 km ,
B) 1 AU ,
C) 10 m ,
D) 11 y
(c) Age of planet Venus
A) 500 Myr ,
B) $13 \mathrm{Myr}, \mathrm{C}) 4 \mathrm{Gyr}$,
D) 13 Gyr
(d) Diameter of a red giant (ly=light year):
A) 1 lyU ,
B) 1 AU ,
C) $10^{5} \mathrm{~km}$,
D) 1 pc
(e) Central temperature of a main sequence star of spectral class M :
A) $10^{9} \mathrm{~K}$,
B) $6 \cdot 10^{7} \mathrm{~K}$,
C) $9 \cdot 10^{6} \mathrm{~K}$,
D) 3000 K
(f) Distance to a quasar (ly=light year):
A) $10^{10} \mathrm{ly}$,
B) $\left.10^{7} \mathrm{AU}, \mathrm{C}\right) 20 \mathrm{kpc}$,
D) 13 Gpc
(g) Density parameter $\Omega_{\mathrm{M}, 0}$ (matter) for the present cosmological model:
A) 0.04 ,
B) 0.3 ,
C) 0.7,
D) 1.0
A) 0
B) 2.735
C) 6
D) 1100
(h) Redshift of the Last Scattering Surface

2.

A result from radiative transfer theory for stellar atmospheres is the following:
$I_{v}(0,1) \approx B_{v}\left(\tau_{v}=1\right)$, where I_{v} is a function of τ_{v} and of $\mu=\arccos (\theta)$, and B is Planck's law. Use this result to explain the formation of absorption lines in stellar spectra.

3.

a.) Draw a Hertzsprung-Russel (HR) diagram. Label each axis in two different ways and mark the positions of different types of stars.
b.) Describe how you can use an HR diagram to determine age and distance to a globular cluster in the Milky Way.

4.

A spiral galaxy is observed to have a redshift corresponding to a velocity of $720 \mathrm{~km} / \mathrm{s}$ and an apparent magnitude of 9 . What is its absolute magnitude? Assume that the galaxy consists of only Sun-like stars. How many stars does it contain?

5.

The relativistic equation of state for a degenerate electron gas is $P=K_{2} \rho^{4 / 3}$, where $K_{2}=\frac{1.24 \cdot 10^{10}}{\mu_{e}{ }^{4 / 3}}$ (and $\mu_{e}=\frac{2}{1+X}$, where X is the hydrogen mass fraction).
a.) Make a very crude ("order of magnitude") estimate of the mass of a star composed of such matter.
b.) What type of star is it? What happens if such a star attracts more mass from a companion, and why is that process important for cosmology?

6.

Assume that you have discovered a planetary system where the most massive planet is a Saturn-sized planet in circular orbit (radius 8 AU) around a Sun-like star.
a.) What is the maximum Doppler shift of the Calcium H line (396.847 nm)?
b.) How far from the centre of the star is the centre of mass of the system?

7.

Explain the meaning of the "Horizon problem" in modern cosmology and how it is resolved.

8.

Give an example of supportive evidence for the "unification theory" for active galactic nuclei (AGNs). Give also one example of why the unification theory can not explain all of the observed variety in AGN-types.

9.

Derive Friedmann's equation using Newtonian physics plus the result from general relativity that the energy per unit mass is $E=-k c^{2} / 2$. Explain very briefly what k is. (Neglect Λ.)

Then solve Friedmann's equation (i.e., find $a(t)$) for the time before matter-radiation equality. (Make a reasonable simplification of Friedmann's equation first, and explain why you do it, and make a reasonable assumption of how the density depends on the scale factor.)

10.

A star (5 solar masses) has started to evolve away from the main sequence (MS). When the star arrives at its nect destination in the HR diagram it has a surface temperature of 5000 K and is shining at 5% of its Eddington luminosity. Estimate the Kelvin-Helmholtz timescale for star. It would typically take the star 350000 years to make the transition away from the MS can you give a brief explanation to why your result differs from this?

Astrophysics equations, constants and units

Binary stars, planet+star, etc.
$m_{1} r_{1}=m_{2} r_{2}$ and $m_{1} V_{1}=m_{2} V_{2} \quad$ centre of mass
$a=a_{1}+a_{2} \quad$ semi-major axis of relative orbit
$\frac{a^{3}}{P^{2}}=\frac{G\left(m_{1}+m_{2}\right)}{4 \pi^{2}} \quad \quad$ Keplers 3rd law (for the relative orbit)
$V=V_{0} \sin i \quad$ observed velocity
$V_{0}=\frac{2 \pi a}{P} \quad$ velocity of circular orbit

Radiation, magnitudes, luminosities, etc.

$$
m=-2,5 \lg \frac{F}{F_{0}} \quad m=\text { apparent magnitude, } F=\text { observed flux }
$$

$$
m-M=5 \lg \frac{d}{10 \mathrm{pc}}+A \quad M=\text { absolute magnitude, } d=\text { distance, } A=\text { extinction }
$$

$$
A=a d \quad a=\text { interstellar extinction coefficient }
$$

$$
\begin{array}{ll}
F=\sigma T^{4} & F=\text { flux from surface }, T=\text { surface temperature } \\
L=A F & L=\text { luminosity, } A=\text { emitting area }
\end{array}
$$

$$
\begin{aligned}
& { }_{v}=\frac{v}{3} \cdot \frac{1}{\left(e^{v /} 1\right)} \mathrm{m}^{-3} \mathrm{~Hz}^{-1} \square \quad \approx 2,0 \quad \cdot 10 \quad 3 \quad \mathrm{~m}^{-3} \square \\
& v=\frac{v^{3}}{3} \cdot \frac{1}{\left(e^{v / 1}\right)} \square \mathrm{m}^{-3} \mathrm{~Hz}^{-1} \square \quad \approx \quad, \quad \cdot \mathbb{1} 0 \cdot{ }^{4} \square \mathrm{~m}^{-3} \square \\
& I_{v}=\frac{2 \nu^{3}}{\left(e^{v /} 1\right)} \square \mathrm{W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1} \square \quad I \approx \quad, \quad 10 \quad 4 \quad \mathrm{~W} \mathrm{~m} \mathrm{~m}^{-2} \square \\
& \left.I_{v}=\frac{2 \nu^{3}}{\left(e e^{v /}\right.} \frac{1}{1}\right) \mathrm{W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1} \square \quad v \mathrm{a} \approx \quad, \quad{ }^{1 \mathrm{P}} 0 \\
& -=-\quad=-\quad \tau= \\
& I=I, \cdot{ }^{v} \cdot\left(1-{ }^{v}\right) \quad=\quad \cdot \quad v \quad \cdot\left(1-{ }^{v}\right)
\end{aligned}
$$

Stellar structure

$\square={ }^{2} \rho$
$\underline{P}=-\frac{}{2} \rho$
$-={ }^{2} \rho$
$-=-\frac{\rho}{a c} \frac{\rho}{3} \frac{2}{2}$
$-=1-\frac{1}{P}-\frac{P}{}$

Cosmology

$$
=0 \quad \text { Hubble's law }
$$

$1 \quad=1-=\stackrel{0}{ }^{s}=\frac{v}{v_{0} s}=\stackrel{0}{-}$ redshift
$\left.{ }^{2}=-c^{2} \quad \ell \quad a(t)^{2}\right] \quad{ }^{2}\left(\begin{array}{llll}\theta & s^{2} \theta & \left.{ }^{2}\right) & \text { Robertson-Walker metric }\end{array}\right.$
$-\quad-=\frac{-}{3} \rho \quad \overline{3} \quad$ Friedmann equation with cosmological constant

Miscellaneous

$\frac{v}{c}=\frac{\Delta \lambda}{\lambda_{0}}$
$d=\frac{R}{\pi}$
$E_{\text {kin }}=\frac{m v^{2}}{2}$
$E_{\mathrm{pot}}=-\frac{G M m}{R}$
$E_{\text {kin }}=\frac{M(\Delta v)^{2}}{2}, E_{\mathrm{pot}}=-\frac{G M^{2}}{2 R}$
(energies for an elliptical galaxy, with some
definition of its radius R and velocity dispersion Δv)
$2 E_{\mathrm{kin}}+E_{\mathrm{pot}}=0 \quad$ the virial theorem
$V_{c}=\sqrt{\frac{G M}{R}}$
$\theta \approx 1.22 \frac{\lambda}{\mathrm{D}} \quad$ resolution of telescope
$(t)=0 \quad \overline{\overline{1 /}}^{2} \quad$ radioactive decay
$-=\mathrm{s} \mathrm{a} \mathrm{\bar{r}}-$
recombination and ionization equation
$\frac{4}{\cdot 1 \Theta^{0} \odot} \approx \frac{4}{200} \quad(\quad) \mathrm{s} \quad \mathrm{rr} \quad \mathrm{a} \quad \mathrm{o}$

Some mathematics

$$
\begin{aligned}
& x=\ln y \Leftrightarrow y=e^{x} \quad e^{-x}=\frac{1}{e^{x}} \quad e^{x+y}=e^{x} \cdot e^{y} \\
& x=\lg y \Leftrightarrow y=10^{x} \quad \lg x y=\lg x+\lg y \quad \lg \frac{x}{y}=\lg x-\lg y \\
& =\quad= \\
& =\quad= \\
& =-\quad=\frac{-}{2} \\
& \text { - }=\text { — } \quad \text { r } \quad(=), \quad=\quad(\quad) \\
& -(\quad)=\quad, \quad-(\quad)^{1}=\left(\begin{array}{ll}
\text { or } & , 0)-(\quad)= \\
\hline
\end{array}\right.
\end{aligned}
$$

Constants and units

$$
\begin{aligned}
& G=6.67 \cdot 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& c=2.9979 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \\
& =5.67 \cdot 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\
& =\quad, \quad 20 \quad{ }^{34} \pi 0 \\
& k=1, \quad 0 \quad 0 \quad 210 K^{-1}
\end{aligned}
$$

1 parsec $(1 \mathrm{pc})=3.26$ light years $=3.0857 \cdot 10^{16} \mathrm{~m}$
$1 \mathrm{AU}=1.496 \cdot 10^{11} \mathrm{~m}$
1 year $=3.156 \cdot 10^{7} \mathrm{~s}$
$1 \operatorname{arcmin}\left(1^{\prime}\right)=1 \square 60 . \quad 1 \operatorname{arcsec}\left(1^{\prime \prime}\right)=1 \square 3600$.

HI rest frequency (" 21 cm line" of atomic hydrogen): $\quad 1420.4 \mathrm{MHz}$
Absolute magnitude of the Sun: $\sqsubset 4.8$
The solar constant (1 AU from the Sun): $1371 \mathrm{~W} / \mathrm{m}^{2}$
$H_{0}=100 h \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$. Use $h=0.72$
Masses: Earth: $5.97 \cdot 10^{24} \mathrm{~kg}, \quad$ upiter: $1.90 \cdot 10^{27} \mathrm{~kg}, \quad$ Sun: $1.99 \cdot 10^{30} \mathrm{~kg}$
Radii: Earth: 6378 km , upiter: 71398 km , Sun: $6.96 \cdot 10^{5} \mathrm{~km}$.

131117 Modern astroplugsics, tents 16 december 2013
(1) a) D
b) A
c) C
d) B
e) C
f) A
g) B

40
(2) See texterode, section 2.4 .3
(4) $v=H \cdot d \Rightarrow d=v / H=710 / 72=10 \mathrm{Mpc}$

$$
m-M=5 \lg \frac{d}{10 \rho c} \Rightarrow M=m-5 \lg \frac{10 \cdot 10^{6}}{10}=9-30=-21
$$

The Sum at $10 \mathrm{Mpe}: m_{s}=M_{s}+5 \lg \frac{d}{10 p c}=4.8+30=34.8$
The glary, with N Sum-tike stars: $m=-2.5 \lg \frac{F}{F_{0}}=$

$$
=-2.5 \lg \frac{N F_{s}}{F_{0}}=-2.5 \lg N-25 \lg \frac{F_{5}}{F_{0}}=-2.5 \lg N+m_{s}
$$

Sf: $\quad 9=-2.5 \lg N+34.8 \Rightarrow N=2 \cdot 10^{10}$
(5) a) Simplify $\frac{d P}{d r}=-\frac{G M_{r}}{r^{2}} \rho \rightarrow$ Roughly $\frac{P}{R}=\frac{G M}{R^{2}} \rho$

Use $P=K_{2} \rho^{4 / 3}$ and $\rho=M /\left(\frac{4 \pi}{3} R^{3}\right)$. $\left.\operatorname{Lor} \rho \approx M R^{3}\right\}$

$$
\Rightarrow M=\left(\frac{K_{2}}{G}\right)^{3 / 2}\left(\frac{3}{4 \pi}\right)^{1 / 2}, K_{2}=\frac{1.24 \cdot 10^{10}}{\mu_{e}^{4 / 2}}, \mu_{e}=\frac{2}{1+x}
$$

Use $x=0$ [no hydrogen; other values $0-1$ also de $\}, \mu_{c}=2$

$$
\Rightarrow K_{2}=4.92 \cdot 10^{9}[S 1] \Rightarrow M=3 \cdot 10^{29} \mathrm{~kg}=0.15 \mathrm{M}_{0}
$$

b) White duraif. Suppersora (Ia). Distance measurements.
(9) See textbook, section 10.4. k describes curvature Radiation dominated era: $\rho=\rho_{R_{0}}\left(\frac{a_{0}}{a}\right)^{4}$. ka O (density term langer than curvature term when $a \rightarrow 0$), so Friedmann's equations:

$$
\begin{aligned}
& \frac{\dot{a}^{2}}{a^{2}}=\frac{8 \pi G}{3} \rho_{R_{0}}\left(\frac{a_{0}}{a}\right)^{4} \Rightarrow \frac{d a}{d t}=\sqrt{\frac{8 \pi G \rho_{R i 0}}{3} a_{0}^{2} \frac{1}{a} \Rightarrow} \\
\Rightarrow & \int_{0}^{a} a d a=\sqrt{\frac{8 \pi G \rho_{0}}{3}} a_{0}^{2} \int_{0}^{t} d t \Rightarrow a(t)=\left(\frac{32 \pi G \rho_{0}}{3}\right)^{1 / 4} a_{0} t^{1 / 2}
\end{aligned}
$$

$31 a$
b)

Please see the book for sample HR dikg sras.
 super Gilants white ompaifs.
b) Agc: Fidruttio the ukenec" an the lislr dirtance: Estrmate appagrent onagmifudes of identifiable stular
6.

$$
\begin{aligned}
& V_{*}=\frac{m_{p}}{m_{*}} v_{p}, v_{p}=\frac{2 \pi r}{F} \quad V_{p}^{2}=\frac{G^{M} M}{R} \\
& \Delta \lambda=\frac{b_{c}}{c} d_{p} \\
& m_{p} r_{p}+r_{*} r_{*} \quad r_{p}-8 \mid A \omega-r_{k} \\
& r_{*}=m_{p} 840
\end{aligned}
$$

7) Hon'zion priblarn: oppotile dorob of the Urrivede hare not been in cartedt with ofin often sive bat aret outsciele the lihoritzunt, Howl can the univelrst be
 intention thes ing the soly ibmol.

 shpeilumindel mation

Evideude agarmt Evolntrini differdnt pupkuation odi radro sispere at atpperta rama pounds
Torns peluperdes ondriki with uaminosilt
 with 5\%. of LEdd. This wilg give the final radius and the total contracton eqoigy. The $K H$ trace scace lid the time

why the atsorepang? onth the lip rope coovapses \rightarrow \rightarrow delfradion a dre drale

