Exam in **RRY125/ASM510 Modern astrophysics**

Tid: 21 december 2012, kl. 14.00–18.00 *Plats:* V-salar, Chalmers *Ansvarig lärare:* Magnus Thomasson ankn. 8587 (lärare besöker tentamen ca. kl.15.00 och 17.00)

Tillåtna hjälpmedel:

- Typgodkänd räknedosa
- Physics Handbook, Mathematics Handbook
- bifogat formelblad
- ordlista (ej elektronisk)

You may use:

- Chalmers-approved calculator
- Physics Handbook, Mathematics Handbook
- enclosed sheet with formulae
- dictionary (not electronic)

Grades:

The maximum number of points is 30.

Chalmers: Grade 3 requires 12 p, grade 4 requires 18 p, grade 5 requires 24 p. GU: Grade G requires 12 p, grade VG requires 21 p.

Note: Motivate and explain each answer/solution carefully.

This page is intentionally blank.

1.				
Choose the most reasonable of the given va	lues for the foll	lowing (do r	not give a m	otivation):
(a) Surface pressure at Venus (Earth = 1):	A) 100	B) 10	C) 1,	D) 0.1
(b) Age of the Moon:	A) 500 Myr,	B) 1 Gyr,	C) 4 Gyr,	D) 10 Gyr
(c) Diameter of a red giant (ly=light year):	A) 1 AU,	B) 1 ly,	C) 10^5 km,	D) 1 pc
(d) Central temperature of a main sequence	star of spectral	class A:		
	A) 20000 K,	B) $2 \cdot 10^6$ K,	C) $2 \cdot 10^7$ K,	D) 10 ⁹ K
(e) Redshift of a nearby cluster of galaxies:	A) 0.0001,	B) 0.01,	C) –0.5,	D) 3.0
(f) Distance to a quasar (ly=light year):	A) 10^5 ly,	B) 10 ⁶ AU,	C) 10 Gpc,	D) 3 Gpc
(g) Density parameter $\Omega_{\Lambda,0}$ ("dark energy")	for the present	cosmologic	al model:	
	A) 0.04,	B) 0.3,	C) 0.7,	D) 1.0
(h) Redshift of the Last Scattering Surface	A) 0	B) 2.735	C) 6	D) 1100
				(4 p)

2.

Clouds of HI typically have temperatures of 80 K. Such a cloud is observed with a radio telescope. What is the observed brightness temperature if the cloud is optically very thin or very thick, resp.? Take the cosmic microwave background radiation into account. (2 p)

3.

The spectroscopic method has been used to detect a planet around a star: the Calcium H line (396.847 nm) shifts back and forth ± 0.000077 nm with a period of 11.6 days. The star's observed parallax is 0.4" and its apparent magnitude is 3.1. The spectrum shows that the star is a main sequence star, for which luminosity and mass are related by $lg(L/L_{\odot}) = 3.7 \cdot lg(M/M_{\odot})$. The luminosity of the Sun is $3.84 \cdot 10^{26}$ W.

Estimate the surface temperature of the planet (assume it has an albedo of 0.7)! You may assume that the planet's orbit is seen edge-on. (5 p)

4.

The figure shows a Hertzsprung-Russell diagram for two star clusters. The y-axis shows the apparent magnitude.

a.) What is on the x-axis? Give <i>two</i> possibilities, and explain briefly what they are.	(1 p)
b.) Which of the two clusters is nearest?	(1 p)
c.) Which of the clusters is oldest? Motivate your answer briefly.	(1 p)
d.) How are open and globular star clusters distributed in the Milky Way?	(1 p)
e.) Which main sequence are stars burning hydrogen through the CNO-cycle?	(1 p)

The figure shows the observed radial velocity as a function of radius (in arcsec) for a spiral galaxy seen at an inclination of 45° . A supernova of Type Ia explodes in the galaxy. At its maximum brightness, its apparent magnitude is 14.2. Such supernovae have absolute magnitude -19.3.

a.) Estimate the mass of the galaxy.

b.) Estimate the luminosity of the galaxy (expressed in some suitable unit). (1 p) **c.**) Assume that the Universe is matter-dominated and flat, and with Λ =0. Calculate the age of the Universe with the information given above and in the figure. (You may make a reasonable assumption of how the density depends on the scale factor.) *Hint:* Do *not* just calculate the Hubble time. (4 p)

d.) Briefly describe the mechanism behind supernovae type Ia and type II, resp. Why are Type Ia supernovae better for distance measurements than Type II? (3 p)

6.

Explain why studies of the cosmic deuterium abundance are important in cosmology. What is the conclusion from such studies (exact numbers not needed)? (2 p)

7.

Put the following events during the evolution of the Universe in time order, starting with the event that happened first:

- A. Reionization
- B. Matter domination begins
- C. Formation of quasars
- D. Cosmic microwave background radiation emitted from the last scattering surface.
- E. Primordial nucleosynthesis

(**1** p)

(2 p)

8.

What was the temperature of the cosmic microwave background radiation when typical distances between galaxies were half as large as now? (1 p)

5.

Astrophysics equations, constants and units

Binary stars, planet+star, etc.

 $m_1r_1 = m_2r_2$ and $m_1V_1 = m_2V_2$ centre of mass $a = a_1 + a_2$ semi-major axis of relative orbit $\frac{a^3}{P^2} = \frac{G(m_1 + m_2)}{4\pi^2}$ Keplers 3rd law (for the relative orbit) $V = V_0 \sin i$ observed velocity $V_0 = \frac{2\pi a}{P}$ velocity of circular orbit

Radiation, magnitudes, luminosities, etc.

$$n_{v} = \frac{8\pi v^{2}}{c^{3}} \cdot \frac{1}{(e^{hv/kT}-1)} [m^{-3} Hz^{-1}] \qquad n \approx 2,03 \cdot 10^{7} \cdot T^{3} [m^{-3}]$$

$$U_{v} = \frac{8\pi hv^{3}}{c^{3}} \cdot \frac{1}{(e^{hv/kT}-1)} [J m^{-3} Hz^{-1}] \qquad U \approx 7,56 \cdot 10^{-16} \cdot T^{4} [J m^{-3}]$$

$$I_{v} = \frac{2\pi hv^{3}}{c^{2}} \cdot \frac{1}{(e^{hv/kT}-1)} [W m^{-2} Hz^{-1}] \qquad I \approx 5,67 \cdot 10^{-8} \cdot T^{4} [W m^{-2}]$$

$$I_{v} = \frac{2hv^{3}}{c^{2}} \cdot \frac{1}{(e^{hv/kT}-1)} [W m^{-2} Hz^{-1} sr^{-1}] \qquad v_{max} \approx 5,88 \cdot 10^{10} \cdot T$$

$$\frac{dI_{v}}{dz} = j_{v} - \alpha_{v}I_{v} \qquad S_{v} = \frac{j_{v}}{\alpha_{v}} \qquad d\tau_{v} = \alpha_{v} dz$$

$$I_{v} = I_{v, bg} \cdot e^{-\tau_{v}} + S_{v} \cdot (1 - e^{-\tau_{v}}) \qquad T_{b} = T_{bg} \cdot e^{-\tau_{v}} + T_{ex} \cdot (1 - e^{-\tau_{v}})$$

 $m = -2.5 \lg \frac{F}{F_0}$ m = apparent magnitude, F = observed flux $m - M = 5 \lg \frac{d}{10 \text{ pc}} + A$ M = absolute magnitude, d = distance, A = extinction A = ad a = interstellar extinction coefficient $F = \sigma T^4$

$$F = \sigma T^{+}$$
 $F =$ flux from surface, $T =$ surface temperature $L = AF$ $L =$ luminosity, $A =$ emitting area

Stellar structure

 $\frac{dM_r}{dr} = 4\pi r^2 \rho$ $\frac{dP}{dr} = -\frac{GM_r}{r^2} \rho$ $\frac{dL_r}{dr} = 4\pi r^2 \rho \varepsilon$ $\frac{dT}{dr} = -\frac{3}{4a_{\rm B}c} \frac{\chi \rho}{T^3} \frac{L_r}{4\pi r^2}$ $\frac{dT}{dr} = \left(1 - \frac{1}{\gamma}\right) \frac{T}{P} \frac{dP}{dr}$

Cosmology

$$v = H_0 l$$
Hubble's law

$$1 + z = 1 + \frac{v}{c} = \frac{\lambda_{obs}}{\lambda_{em}} = \frac{v_{em}}{v_{obs}} = \frac{a_0}{a}$$
redshift

$$ds^2 = -c^2 dt^2 + a(t)^2 \left(\frac{dr^2}{1 - kr^2} + r^2(d\theta^2 + \sin^2\theta d\varphi^2)\right)$$
Robertson-Walker metric

$$\frac{\dot{a}^2}{a^2} + \frac{kc^2}{a^2} = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3}$$
Friedmann equation with cosmological constant

Miscellaneous

$\frac{v}{c} = \frac{\Delta \lambda}{\lambda_0}$	the Doppler effect
$d = \frac{R}{\pi}$	$R = 1 \text{ AU}, \pi = \text{parallax angle} (R = 1 \text{ and } [\pi] = " \text{ gives } d \text{ in pc})$
$E_{\rm kin} = \frac{mv^2}{2}$	kinetic energy
$E_{\rm pot} = -\frac{GMm}{R}$	potential energy for a point mass m orbiting a point mass M
$E_{\rm kin} = \frac{M(\Delta v)^2}{2}, E_{\rm pot} = -\frac{GM^2}{2R}$	(energies for an elliptical galaxy, with some
	definition of its radius <i>R</i> and velocity dispersion Δv)
$2E_{\rm kin} + E_{\rm pot} = 0$	the virial theorem
$V_c = \sqrt{\frac{GM}{R}}$	circular velocity
$\theta \approx 1.22 \frac{\lambda}{D}$	resolution of telescope
$N(t) = N_0 e^{-\lambda t}; \ \lambda = \frac{\ln 2}{t_{1/2}}$	radioactive decay
$\frac{dn_{\rm e}}{dt} = N_{\rm star} \frac{q}{V} - \alpha n_{\rm e} n_{\rm p}$	recombination and ionization equation
$\frac{L_{\rm I}}{4\cdot 10^{10}L_{\rm I,\odot}} \approx \left(\frac{V_{\rm max}}{200 \text{ km/s}}\right)^4$	(the Tully-Fisher relation)
$\frac{L_{\rm V}}{2 \cdot 10^{10} L_{\rm V,\odot}} \approx \left(\frac{\sigma}{200 \text{ km/s}}\right)^4$	(the Faber-Jackson relation)
$L_{\rm E} = \frac{4\pi G M m_{\rm p} c}{\sigma_{\rm T}} \approx 1.3 \cdot 10^{31} \frac{M}{\rm M_{\odot}} (m_{\rm p})$	watt) $\approx 30000 \frac{M}{M_{\odot}} L_{\odot}$ (the Eddington luminosity)

Some mathematics

 $\begin{aligned} x &= \ln y \Leftrightarrow y = e^{x} \qquad e^{-x} = \frac{1}{e^{x}} \qquad e^{x+y} = e^{x} \cdot e^{y} \\ x &= \lg y \Leftrightarrow y = 10^{x} \qquad \lg xy = \lg x + \lg y \qquad \lg \frac{x}{y} = \lg x - \lg y \\ f &= u + v \qquad f' = u' + v' \\ f &= uv \qquad f' = u'v + uv' \\ f &= \frac{u}{v} \qquad f' = \frac{u'v - uv'}{v^{2}} \\ \frac{dy}{dx} &= \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = F(u), u = f(x) \\ \frac{d}{dx}(x^{n}) &= nx^{n-1}, \quad \frac{d}{dx}(\ln x) = \frac{1}{x} \qquad (\text{for } x > 0), \quad \frac{d}{dx}(e^{x}) = e^{x} \end{aligned}$

Constants and units

$G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
$c = 2.9979 \cdot 10^8 \text{ m/s}$
$\sigma = 5.67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
$h = 6,62606896 \cdot 10^{-34} \text{ J s}$
$k = 1,3806504 \cdot 10^{-23} \text{ J K}^{-1}$
1 parsec (1 pc) = 3.26 light years = $3.0857 \cdot 10^{16}$ m 1 AU = $1.496 \cdot 10^{11}$ m 1 year = $3.156 \cdot 10^7$ s 1 arcmin (1') = $1^{\circ}/60$. 1 arcsec (1'') = $1^{\circ}/3600$.
HI rest frequency ("21 cm line" of atomic hydrogen): 1420.4 MHz
Absolute magnitude of the Sun: +4.8 The solar constant (1 AU from the Sun): 1371 W/m ² $H_0 = 100h \text{ km s}^{-1} \text{ Mpc}^{-1}$. Use $h = 0.72$
Masses:Earth: $5.97 \cdot 10^{24}$ kg,Jupiter: $1.90 \cdot 10^{27}$ kg,Sun: $1.99 \cdot 10^{30}$ kgRadii:Earth: 6378 km,Jupiter: 71398 km,Sun: $6.96 \cdot 10^5$ km.

Modern astro, 21 Dec 2012 2 (4) T, B-V, spectral class, colour (see book) a) 6) (lowest magnitude) B (evolved stars) c)See book d) Upper part of M.S (5.) a) Vobs = V sini => V = 150/sin45° = 212 lun/s $V = \int G \mathcal{M} / R = \mathcal{M} = R V^2 / G = R = 2$ From Supernova: M-M= 5kg 4/10 pc => => 14.2+19.3 = 5 lgd/10pc => d= 50.1 Mpc $R = 50.1 \cdot 10^{\circ} \cdot 80^{\circ} \cdot \frac{1}{3600} \cdot \frac{1}{180} pc = 19431 pc = 6.00 \cdot 10^{20} m$ M= RV2/G = 4.04.10" kg = 2.0.10 Mo 6) Tully-Fisher: $\frac{L_{I}}{4.10^{10}} = \frac{200 \text{ lm}(s)}{200 \text{ lm}(s)} = \frac{1}{200} = 5.0.10^{10} \text{ L}_{I,0}$ C) $k=0, N=0, H_0 = \frac{\sqrt{3600.10^3}}{50.1.10^6.3.0857.10^{16}} = 2.33.10^{18}$ Friedmann: a = STIG. S. Hatter: S=So, (a)³ $= \int \frac{da}{dt} = \sqrt{\frac{811G}{3}} \frac{g_{0,c}a_{0}^{3}}{g_{0,c}a_{0}^{3}} \frac{-1/2}{a} = \int \frac{a^{1/2}}{a^{1/2}} \frac{da}{da} = \sqrt{\frac{811G}{3}} \frac{g_{0,c}a_{0}^{3}}{g_{0,c}a_{0}^{3}} \int \frac{dt}{dt}$ $\Rightarrow a(t) = \left(\frac{3}{2}\right)^{2/3} \left(\frac{8716}{3}S_{c_0}R_0^3\right)^{1/3} = \left(\frac{3}{2}\right)^{2/3} \left(H_0^2 a_0^3\right)^{1/3} t^{2/3}$ $= \frac{a(t)}{a} = \left(\frac{3}{2} + \frac{1}{2}\right)^{2/3}, \quad a(t) = a, = \frac{1}{2} + \frac{1}{2$ = 9.1 Gyr d.) See the book See the book. Non-baryonic dark matter needed E, B, D, C, $(3) (1+2+) \frac{a_0}{a} = \frac{T}{T_0} \implies T=2 T_0 = 5.47 K$