MCC120

Microwave Electronics, Chalmers University of Technology, MC2, building B, 6th floor.

Exam in **FOUNDATIONS FOR MICROWAVE ENGINEERING** for MPMPE and E4/F4

Tuesday, December 14, 2010, <u>8:30-12:30</u>, <u>M building</u>

Teacher: Docent Piotr Starski	tel.: 031-772 17 34
Questions: Docent Piotr Starski	tel.: 031-772 17 34

Solutions are in my office.

The inspection of the results can be done in my office on Tuesday, January 4, 2011, 10:30-11:30. The final results will be sent to registrar office on Monday, January 10, 2011. The limits for the grades are as follows:

- \circ 7.5 credits \rightarrow grade 3
- \circ 11 credits \rightarrow grade 4
- 14.5 credits → grade 5

The following items are allowed on the examination:

- Any type of calculator
- Copies of the lectures viewgraphs
- o "Foundations for microwave engineering" by Collin
- A conversion table distributed in the tutorials
- Mathematical tables

It is imperative to clearly explain how the results have been obtained

1. A rectangular waveguide is filled with three different dielectrics: $\varepsilon_1, \mu_0, \varepsilon_2, \mu_0$ and ε_3, μ_0

We know also, that $\varepsilon_1 < \varepsilon_2 < \varepsilon_3$. Calculate the length of the section in the middle, θ , and ε_2 , to obtain maximal power transfer at center frequency from the left to the right. Assume that the waveguide is working in the dominant mode and a=2b.

2. We have an air filled circular waveguide. The waveguide is excited in TM modes. Calculate the frequency f as a function of cut-off frequency f_c to obtain the lowest possible attenuation (consider only metallic losses). 3. For an ideal transformer

derive the s matrix starting from the given currents and voltages.

- 4. Consider a 3 port network which is lossless and reciprocal. We know that $s_{13}=s_{23}$ and $s_{11}=s_{22}$. Port 2 of the network is loaded with a matched load. Show that by loading port 3 with an appropriate reactance port 1 can be matched.
- 5. Analyze the circuit below:

The ring has normalized admittance y. Calculate s parameters if the ring is fed in port 1. Calculate y to obtain around 3 dB power split (exact equal power split is not possible).

6. Consider the circuit below:

Calculate b_2 as the function of b_1 if the circuit in the dashed lines is matched. What is the transmission phase of this circuit expressed in b_1 ? Is it possible to have different components at match, i.e. inductor or capacitor at the same time as b_1 and b_2 ?