MCC120

Microwave Electronics, Chalmers University of Technology, MC2, building B, $6^{\text {th }}$ floor.
Exam in FOUNDATIONS FOR MICROWAVE ENGINEERING for MPMPE and E4/F4

Tuesday, December 14, 2010, 8:30-12:30, M building

Teacher: Docent Piotr Starski
tel.: 031-772 1734
Questions: Docent Piotr Starski
tel.: 031-772 1734
Solutions are in my office.
The inspection of the results can be done in my office on Tuesday, January 4, 2011, 10:30-11:30.
The final results will be sent to registrar office on Monday, January 10, 2011.
The limits for the grades are as follows:

$$
\begin{array}{ll}
\circ & 7.5 \text { credits } \rightarrow \text { grade } 3 \\
\circ & 11 \text { credits } \rightarrow \text { grade } 4 \\
\circ & \mathbf{1 4 . 5} \text { credits } \rightarrow \text { grade } 5
\end{array}
$$

The following items are allowed on the examination:

- Any type of calculator
- Copies of the lectures viewgraphs
- "Foundations for microwave engineering" by Collin
- A conversion table distributed in the tutorials
- Mathematical tables

It is imperative to clearly explain how the results have been obtained

1. A rectangular waveguide is filled with three different dielectrics: $\varepsilon_{1}, \mu_{0}, \varepsilon_{2}, \mu_{0}$ and ε_{3}, μ_{0}

We know also, that $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$. Calculate the length of the section in the middle, θ, and ε_{2}, to obtain maximal power transfer at center frequency from the left to the right. Assume that the waveguide is working in the dominant mode and $\mathrm{a}=2 \mathrm{~b}$.
2. We have an air filled circular waveguide. The waveguide is excited in $T M$ modes. Calculate the frequency f as a function of cut-off frequency f_{c} to obtain the lowest possible attenuation (consider only metallic losses).
3. For an ideal transformer

derive the s matrix starting from the given currents and voltages.
4. Consider a 3 port network which is lossless and reciprocal. We know that $s_{13}=s_{23}$ and $s_{11}=s_{22}$. Port 2 of the network is loaded with a matched load. Show that by loading port 3 with an appropriate reactance port 1 can be matched.
5. Analyze the circuit below:

The ring has normalized admittance y. Calculate s parameters if the ring is fed in port 1. Calculate y to obtain around 3 dB power split (exact equal power split is not possible).
6. Consider the circuit below:

Calculate b_{2} as the function of b_{1} if the circuit in the dashed lines is matched. What is the transmission phase of this circuit expressed in b_{l} ? Is it possible to have different components at match, i.e. inductor or capacitor at the same time as b_{1} and b_{2} ?

