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Outline

» Series and Parallel Resonant Circuits
» Series Resonant Circuits
» Parallel Resonant Circuits
» Loaded and Unloaded Q
» Transmission line resonators
* Short-circuited A/2 line
» Short-circuited A/4 line
* Open-circuited A/2 line
» Waveguide cavities
* Rectangular waveguie cavities
» Circular/cylindrical waveguide cavities
> Dielectric Resonators

> Excitation of Resonators
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Resonators Applications

> Filters
» Oscillators

» Frequency meters

» Tuned Amplifiers
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Series resonant circuitRs
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Series resonant circults
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Parallel resonant circuits
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Parallel resonant circuits

At resonance: W=W _ | Zin()|
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Loaded and unloaded Q factor

» Unloaded Quality Factor: Q

Resonant

»Loaded Quality Factor: Q, circuit
&

» External Quality Factor: Q,

(connecting the resonator to an external load)
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Short circuited A/2 transmission line
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Short circuited A/4 transmission line
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Open circuited A/2 transmission line
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Rectangular waveguide cavities

» Waveguide section closed by conductive walls
in z direction at z=0 and z=d

3
»Provide usually better Q values transmission
line resonators above 1 GHz.

_ »Power is dissipated in the metallic walls and

dielectric filling the cavity

»Coupling is done by small aperture or small
loop

O©GARD, Earth and Space Sciences Dept.




CHALMERS Chalmers University of Technology

Rectangular waveguide cavities

AE, The E field of a TE_, or TM, , wave can be
written as:

E (% Y,2) = e(x, y)§A'e 1o + A el

X p = k2 m 02 %]p OZ
" ag €ag
b At z=0 and z=d E=0 (metallic walls short)

d
/‘ A=A
0

a X —e(x, y)A*sin(g,,d)=0
= p..d=Ix
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Rectangular waveguide cavities

Resonant wave numbers and frequency for the
AE TE, or TM_, are given then by

2 2 2
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If b<a<d the dominant resonant mode 1s TE,,
For a TE,, cavity:

b
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Q value for a Rectangular waveguide
cavities of the TE,; mode

» A resonance:
the time average stored electric energy = time average stored magnetic energy

— EEd —6a—de
=41

—ﬁjHH+HH)d sand 2 2122E0:We
4] 16 zTE " na

»Losses in the cavity are caused by:

*Finite conductivity, metallic losses
*Non-perfect dielectric, dielectric losses
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Q value for a Rectangular waveguide
cavities of the TE,; mode

»Metallic losses:
Using the perturbation theory and bearing in mind that the surface current are given by:

J =nxH
P = f 3.0%ds = Rs [IHolds \ Q. with only metallic losses:
Alléwalls 2 All6walls
R5 - 1 ; 55 - i _
o0, WUE

; R(sEOZ/IZPZab bd I%a d} Qg with only dielectric losses:
loss,metal
81

» Dielectric losses: >

Q taking both into account:
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Circular waveguide cavities

»Circular Waveguide section closed by
conductive walls 1n z direction at z=0 and z=d

» same idea and analysis strategy as for the
rectangular waveguide cavity.

»The lowest resonance frequency is obtained for
the TE,,;; mode, which correspond to the TE,, for
a waveguide

QD\\L’\LU

»TE,,; mode is often used for frequency meters
because of its much superior Q value over the
TE,,; mode
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Cylindrical waveguide cavities

The E field of a TE_, or TM, , wave can be

/’_h written as:
T\_l_/ E[(/' / Z) e(r/ )8A+ b Z+A+e+jbanH
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Cylindrical waveguide cavities

Resonant frequencies for the TE _, or TM,
are given then by
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For a given cavity size, use the chart to
determine which modes can be excited
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Q value for a Rectangular waveguide
cavities of the TE,; mode

> A resonance:

the time average stored electric energy = time average stored magnetic energy

E
w-¢l(
A H . Jz}f(mm

Ep

i +‘E¢‘2jpdpd¢d2 (cylindrical coordinates)

16(p; ) P,
»Losses in the cavity are caused by:

*Finite conductivity, metallic losses
*Non-perfect dielectric, dielectric losses
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Q value for a cylindrical waveguide
cavities of the TE,; mode

»Metallic losses:
Using the perturbation theory and beaing in mind that the surface current are given by:
Jo=nxH Q. with only metallic losses:
Iossmetal IJ ‘] dS =2 I|Htan|ds \
Ry = 1 ; 0, = 2
00 wuE

ST S S
2 21 \(puf P ) (Pon) > Q, with only dielectric losses:

» Dielectric losses:

Possdiel = 1j.JE*dv = %IQEP‘Z +‘E¢‘2)jv e=¢ +j&
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Q taking both into account:
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Dielectric resonators

»Small cube, disc or hemisphere of low-loss, high
¢ material (in the range of 10¢, to 100¢,)

»High ¢ for containing the field in the dielectric
with small leakage.

» Same principle of operation as a cavity.

»Q ~ 1000 but dielectric resonators provide
smaller sizes and lower fabrication cost than
cavities.

x »Operates in TE;,; mode
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Dielectric resonators

»L<A,/2 where X, is the wavelength of the TE,
dielectric waveguide mode

»The equivalent circuit would be a transmission
line ended by reactive loads.

» Assume magnetic walls at p=a (i.c. I'=1).

> H_(p=0)

» Almost true since the incident wave from a high
dielectric region to air-filled region 1s given by:

Z
2%
I'= ‘/;r = ‘/;r_l — 1for large &,
ZO+%» \/;Hfl
gl’
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Dielectric resonators

1. TEmode:E, =0
V?H, +k*H, =0

) :{\/Eko for (2| < L/2)

k, for (|z|>L/2)

2. There is variation with ¢, 0/0p=0

> H (p=0) E¢: Jak)l:lo 8502’ Hp__Jk_fa;OZ; kc_ kZ_ﬁZ

3. H,=0 at p=a and has finite value at p=0
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Dielectric resonators

4. For the transverse fields:

E, =10 Hyd, (ko)

c

P

£, ==L H (e

5. Looking at both regions:

> H. (p=0)
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Dielectric resonators

6. Because of symmetry: the fields must be even
functions about z=0

L L
7<= 2| > =
2 2
E, = Ao (k,p)cos Bz E, = BJ(;(ka)e‘“‘z‘
H, = sz Jo(k.p)sin fiz H = iZJB 3k ple "

7. Matching the field expressions at z==1/2:
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Excitation of Resonators

= /o

(c) (d)
Maximum power transferred implies the matching of the resonator to the
feed at the resonant frequency : Critical coupling
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Critical coupling

s A1 Overcoupled <
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£ ¢ o f
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; jr THE § AL o Syl i& »
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Z =R+ j2LA® S T e g
o @, L .
R S .
")i'\ . < ) ] T
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T (
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Definition of the coefficient of coupling, g
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Gap-coupled microstrip resonator

o—1}—o o
ZO |—> Z()
O O O
Feed line Gap Open-circuit

capacitance A/2 resonator

Z

The gap 1s modeled with single capacitor C of
normalized susceptance b,

Zioz—j[}/a)c+zo cotﬂl]z—j(t;i]tﬁal—n;tlkj

At resonance Z =7,

tan Sl +b. =0
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Aperture coupled Cavity

VA
Aperture X
Rk
s — .
, . shon - Antiresonance when Y =0
VA VY circult
S tan gl + X, =0
Fe—Waveguide | Cavity ———»
Z |—> EL Zo. B

| ! o
Y

The aperture 1s modeled as a shunt -
inductance of reactance X;.
, A+ X Particular case :
ZY =—j| “o =—j| —F——>L
° J[ ALJFCOtﬂl} J[ X tan gl j

[= kg/2 for the next resonant mode
No E field in the aperture plane!!
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