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Microwave Engineering (MCC121) 

 

Resonators 
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Outline  
 Series and Parallel Resonant Circuits 

• Series Resonant Circuits 

• Parallel Resonant Circuits 

• Loaded and Unloaded Q 

 Transmission line resonators 

• Short-circuited λ/2 line 

• Short-circuited λ/4 line 

• Open-circuited λ/2 line 

 Waveguide cavities 

• Rectangular waveguie cavities 

• Circular/cylindrical waveguide cavities 

 Dielectric Resonators 

 Excitation of Resonators 
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Resonators Applications 

 Filters 

 

 Oscillators 

 

 Frequency meters 

 

 Tuned Amplifiers 
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Complex power delivered to the resonator 

 
Power dissipated by the resistor 

 
Average magnetic energy stored in the inductor 

 
Average electric energy stored in the capacitor 

 

 

Series resonant circuits 
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Series resonant circuits 
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At resonance: We=Wm  

Near resonance: ω = ω0 + Δω 

BW: Frequency interval were |Zin(ω)|2<2R2 
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Complex power delivered to the resonator 

 
Power dissipated by the resistor 

 
Average magnetic energy stored in the inductor 

 
Average electric energy stored in the capacitor 

 

 

Parallel resonant circuits 
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Parallel resonant circuits 
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At resonance: We=Wm  

Near resonance: ω = ω0 + Δω 

BW: Frequency interval were |Zin(ω)|2>2R2 
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Loaded and unloaded Q factor 
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Unloaded Quality Factor: Q 

 

Loaded Quality Factor: QL 

 

External Quality Factor: Qe 
(connecting the resonator to an external load) 
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Short circuited λ/2 transmission line 

 
 

 

llj

ljl
ZZ

ljZZZ

ljZZ

ljZZ
ZZ

in

inL

L

L
in











tantan1

tantan

tanh0

tanh

tanh

0

0

0

0
0













000

0

tantantan


































 





l

l










 


0

0



 jlZZin

Low losses: tanαl ≈ αl 

In the vicinity of ω0 : ω= ω0 +Δω 
Identification with Series RLC 
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Short circuited λ/4 transmission line 
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Low losses: tanαl ≈ αl 

In the vicinity of ω0 : ω= ω0 +Δω 
Identification with Parallel RLC 
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Open circuited λ/2 transmission line 
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In the vicinity of ω0 : ω= ω0 +Δω 
Identification with Parallel RLC 
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Rectangular waveguide cavities 

Waveguide section closed by conductive walls 

in z direction at z=0 and z=d 

 

Provide usually better Q values transmission 

line resonators above 1 GHz. 

 

Power is dissipated in the metallic walls and 

dielectric filling the cavity 

 

Coupling is done by small aperture or small 

loop 
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Rectangular waveguide cavities 

Et (x, y, z) = e x, y( ) A+e- jbmnz + A-e+ jbmnzé
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The E field of a TEmn or TMmn wave can be 

written as: 

At z=0 and z=d E=0 (metallic walls short) 
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A rectangluar cavity is similar to a shorted λ/2 

transmission line 
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Rectangular waveguide cavities 

222

222

22
























































d

l

b

n

a

mcck
f

d

l

b

n

a

m
k

rrrr

mnl
mnl

mnl






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TEmnl or TMmnl are given then by 

If b<a<d the dominant resonant mode is TE101 
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Q value for a Rectangular waveguide 

cavities of the TE10l mode 
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A resonance: 

  

the time average stored electric energy = time average stored magnetic energy 

Losses in the cavity are caused by: 

 

•Finite conductivity, metallic losses 

•Non-perfect dielectric, dielectric losses 
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Metallic losses: 

Using the perturbation theory and bearing in mind that the surface current  are given by: 

Q value for a Rectangular waveguide 

cavities of the TE10l mode 
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Dielectric losses: 
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Qc with only metallic losses: 

Qd with only dielectric losses: 

Q taking both into account: 
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Circular waveguide cavities 

Circular Waveguide section closed by 

conductive walls in z direction at z=0 and z=d 

 

 same idea and analysis strategy as for the 

rectangular waveguide cavity. 

 

The lowest resonance frequency is obtained for 

the TE111 mode, which correspond to the TE11 for 

a waveguide 

 

TE011 mode is often used for frequency meters 

because of its much superior Q value over the 

TE111 mode 
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Cylindrical waveguide cavities 

Et (r,j, z) = e r,j( ) A+e- jbnmz + A+e+ jbnmzé
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The E field of a TEmn or TMmn wave can be 

written as: 

At z=0 and z=d E=0 (metallic walls short) 
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A cylindrical cavity length must be an integer 

number of λ/2 long 
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Cylindrical waveguide cavities 
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Resonant frequencies for the TEnml or TMnml 

are given then by 

For a given cavity size, use the chart to 

determine which modes can be excited 
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Q value for a Rectangular waveguide 

cavities of the TE10l mode 
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A resonance: 

  

the time average stored electric energy = time average stored magnetic energy 

Losses in the cavity are caused by: 

 

•Finite conductivity, metallic losses 

•Non-perfect dielectric, dielectric losses 
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Metallic losses: 

Using the perturbation theory and beaing in mind that the surface current  are given by: 

Q value for a cylindrical waveguide 

cavities of the TE10l mode 
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Dielectric losses: 
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Qc with only metallic losses: 

Qd with only dielectric losses: 

Q taking both into account: 
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Dielectric resonators 

Small cube, disc or hemisphere of low-loss, high 

ε material (in the range of 10ε0 to 100ε0) 

 

High ε for containing the field in the dielectric 

with small leakage. 

 

Same principle of operation as a cavity. 

 

Q ~ 1000 but dielectric resonators provide 

smaller sizes and lower fabrication cost than 

cavities. 

Operates in TE01δ mode 

http://global.kyocera.com 
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Dielectric resonators 

L<λg/2 where λg is the wavelength of the TE01 

dielectric waveguide mode 

 

The equivalent circuit would be a transmission 

line ended by reactive loads. 

 

Assume magnetic walls at ρ=a (i.e. Γ=1). 

 

Almost true since the incident wave from a high 

dielectric region to air-filled region is given by:  
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1.  TE mode : Ez = 0 

 

 

 

 

2. There is variation with φ, ∂/∂φ=0 

 

 

 

3.  Hz=0 at ρ=a and has finite value at ρ=0  

Dielectric resonators 
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4. For the transverse fields: 

 

 

 

 

5. Looking at both regions: 

Dielectric resonators 
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6. Because of symmetry: the fields must be even 

functions about z=0 

 

 

 

 

 

7. Matching the field expressions at z=±L/2: 

Dielectric resonators 
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This equation need to be solved numerically to find the resonant frequency 

10% accuracy due to the neglection of the fringing fields. 
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Excitation of Resonators 

Maximum power transferred implies the matching of the resonator to the 

feed at the resonant frequency : Critical coupling 
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Critical coupling 
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Definition of the coefficient of coupling, g 

g>1 

g<1 
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Gap-coupled microstrip resonator 
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The gap is modeled with single capacitor C of 

normalized susceptance bc: 

At resonance Z =Z0 

Lowering of the oscillation frequency!!! 

ω0 →ω1< ω0  
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Aperture coupled Cavity 
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The aperture is modeled as a shunt 

inductance of reactance XL: 

Antiresonance when Y =0 

As for the coupled microstrip resonator, 

lowering of the oscillation frequency occur: 

ω0 →ω1< ω0  
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Particular case :  

l= λg/2 for the next resonant mode 

No E field in the aperture plane!! 


