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Microwave Engineering 
MCC121, 7.5hec, 2014

Lecture 8
Passive devices

State-of-the-art
Challenging
Stimulating
Rewarding
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Outline

Summary of  lecture 7 (Ch5)

Passive microwave devices

attenuators, loads

phase shifters

power dividers (7.1-7.4)
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Objectives
On completion of this course unit you should be able to:  

Analyse wave propagating properties of guided wave structures (TE, TM, 
TEM waves, microstrip, stripline, rectangular and circular waveguides, 
coupled lines)

 Apply N-port representations for analysing microwave circuits

 Apply the Smith chart to evaluate microwave networks

 Design and evaluate impedance matching networks

 Design, evaluate and characterise directional couplers and power 
dividers

 Design and analyse attenuators, phase shifters and resonators

 Explain basic properties of ferrite devices (circulators, isolators)
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Transformers
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Tapered transformer
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Design of complex impedance 
terminations
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Find Gamma-S &-L for a certain noise, gain, stability 
requirements... (more about this in active microwave circuits)

Synthesise matching networks N1 and N2 to provide these 
complex impedances (This course MCC121)

Courtesy of Niklas Wadefalk 
MC2, Chalmers and 
Low Noise Factory
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Passive microwave devices
8
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Terminations

Matched load

Variable short circuit

Γ = 0

Γ =1⋅e jφ

Common µ-wave lab utensils
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Ex) Matched loads

different temperatures)

Termination to absorb all power (terminating the line in its characteristic 
impedance) 
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matched load

”lossy” transmission line

lossy material into a wedge
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Movable shorts

Impedance tuning element (reactance)
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The art of making a movable 
waveguide short

Contacting versus noncontacting shorts

Contacting wear out + hard to achieve perfect contact

Solution: High and low impedance quarter wave sections 
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VSWR)
14
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Rotary attenuator

Precision attenuator with low VSWR. The attenuation is insensitive 
to frequency; variations of phase with attenuation are negligible.

Lab equipment rather than employed in systems.
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Decomposition of TE11mode

Sum of two orthogonally polarized modes
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Resistive T or Pi -attenuator
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On white board: Derive a set of design 
equations for a resistive attenuator (T). 
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3-dB attenuator

Explain the different ”moves” in the Smith Chart. Can we replace the shunt resistor? to 
avoid via-hole to ground.19
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Resistive T or Pi -attenuator
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Phase shifters are components used to 
control the phase of a signal with lowest 

There are many different types of phase 
shifters depending on the used technology.

Phase shifter

21
MCC121_2014_lecture_8.key - 25 november 2014



MCC121 / J. Stake

© J. Piotr Starski 

Switched line phase shifter 
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  The losses are constant at all states 

  The circuit is very simple 

  The circuit is small 

  Each bit needs at least 4 diodes, 
high power consumption 

  Complicated DC supply 
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from P. Sobis, J. Stake, and A. Emrich, “High/low-impedance transmission-
IET 

Microwaves, Antennas & Propagation, vol. 5, no. 4, pp. 386–392, 2011.

Differential phase shifters

IEEE Microwave and 
Wireless Components Letters, vol. 18, no. 10, pp. 680–682, Oct. 2008.23
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Directional couplers
24
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Properties

All ports matched

Ex) Incident power 
at port 1 couples 
to port 2 and 3, 
but not into port 
4. Hence, ports 1 & 
4 are uncoupled

25
MCC121_2014_lecture_8.key - 25 november 2014



MCC121 / J. Stake

Applications

Power monitoring

Power dividers (distributing networks)
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S-parameter test set-up
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Power combining networks
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Power dividers
29
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Power dividers or combiners

Power divider is used to divide input power 
among several outputs

We want:

reciprocal

lossless

matched
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Impossible!
must relax one of the conditions

On white board: Derive properties for a passive reciprocal 3-port
30
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Lossless divider

Can not be matched at all ports, and no isolation!
31
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On white board: Show that a 2-way lossless 
divider (three-port junction) can not be 
simultaneously matched. 
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Resistive divider

No isolation!

Lossy and reciprocal, thus can be matched at all ports
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On white board: Derive properties for a 3-port 
resistive divider. 
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© J. Piotr Starski 

No isolation 
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Half of the incident power is lost in the power divider 
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The Wilkinson power divider is lossless, 
when the output ports are matched, and 
has isolation between the output ports.

The Wilkinson power divider

1

2

3

2

3

1
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Even and odd mode method 

Consider a linear, reciprocal 4-port with a symmetry line as marked 

1 2 

3 4 

symmetry line 

We will analyze this circuit by using the even and odd mode method. The method is 
based on two excitations: even and odd, applied to the ports on opposite sides of the 
symmetry line (in our case port 1 and 4). The even excitation corresponds to two 
voltages equal in amplitude and phase, e.g. +1V. The odd excitation corresponds to 
two voltages equal in amplitude but with 180° phase difference (+1V, and –1 V).  

By applying the even excitation to the ports 1(+1 V), and 4(+1 V) the symmetry line 
will act as an open circuit or as we say magnetic wall. 

By applying the odd excitation to the ports 1(+1V), and 4(-1V) the symmetry line will 
act as a short circuit or as we say electric wall. 
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Even mode 
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magnetic wall 

1 2 

3 4 

symmetry line 

short circuit  

electric wall 

Odd mode 

1V

1V

1V

1V−

eΓ

eΓ

oΓ

o−Γ

eT

eT

oT

oT−

38
MCC121_2014_lecture_8.key - 25 november 2014



MCC121 / J. StakeMCC121 / J. StakeMCC121 / J. Stake

© J. Piotr Starski 

We superimpose now both excitations: 

1 2 

3 4 

1V 2
e oΓ + Γ

2
e oΓ −Γ

2
e oT T+

2
e oT T−

This means that the analysis of a reciprocal, linear 4-port with a symmetry property can be 
performed by analyzing two 2-ports in two excitation modes and superposition of the 
results.  
Γ and T for the 2-ports can be easily calculated from the cascade matrix analysis"
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We have only 
excitation in port 1 
and can calculate the 
reflected and 
transmitted waves in 
all ports. 
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On white board: analyse the Wilkinson divider 
(3-dB case, three port) 

40
MCC121_2014_lecture_8.key - 25 november 2014



MCC121 / J. StakeMCC121 / J. Stake

Wilkinson divider: S matrix

© J. Piotr Starski 
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Wilkinson divider: S matrix

© J. Piotr Starski 

From previous calculations we have  22 33s s=
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ex) 4 way power divider
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Wilkinson unequal power 
divider
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Typical examples of Wilkinson power dividers with unequal power split 

2.35/3.8 dB 1.24/6.04 dB 
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Summary of lecture 8

Read chapter 7.1-7.4 (dividers).

Attenuators, phase shifters

Directional couplers
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Further reading
Ernest J. Wilkinson, “An N-Way Hybrid Power 
Divider,” IRE Transactions on Microwave 
Theory and Techniques, vol. 8, no. 1, pp. 116–
118, 1960.

S. Cohn and R. Levy, “History of Microwave 
Passive Components with Particular Attention 
to Directional Couplers,” IEEE Transactions 
on Microwave Theory and Techniques, vol. 32, 
no. 9, pp. 1046–1054, 1984.
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