Microwave Engineering MCC121, 7.5hec, 2014

Lecture 7

MCC121 2014 lecture 7.key - 20 november 2014

Outline

- Summary of stub matching (Ch5)
- Impedance matching cont (Ch5.5-5.9)
 - theory of small reflections
 - transformers based on single and multi section quarter wave lines
 - tapered transmission line transformers

Objectives

On completion of this course unit you should be able to:

- Analyse wave propagating properties of guided wave structures (TE,TM, TEM waves, microstrip, stripline, rectangular and circular waveguides, coupled lines)
- Apply N-port representations for analysing microwave circuits
- Apply the Smith chart to evaluate microwave networks
- Design and evaluate impedance matching networks
- Design, evaluate and characterise directional couplers and power dividers
- Design and analyse attenuators, phase shifters and resonators
- Explain basic properties of ferrite devices (circulators, isolators)

Transformers

Quarter-wave transformer

• On white board: derive response versus frequency.

Bandwidth for quarter-wave transformer

$$Z_{in} = Z_2 \frac{Z_L + jZ_2 \tan \theta}{Z_2 + jZ_L \tan \theta}$$

$$\Gamma = \frac{Z_{in} - Z_1}{Z_{in} + Z_1} = \frac{Z_L - Z_1}{Z_L + Z_1 + 2j\sqrt{Z_L Z_1} \tan \theta}$$

$$|\Gamma| = \frac{|Z_L - Z_1|}{\left[(Z_L + Z_1)^2 + 4Z_L Z_1 \tan^2 \theta\right]^{\frac{1}{2}}} =$$

$$= \frac{1}{\sqrt{1 + \left(\frac{2\sqrt{Z_L Z_1}}{Z_L - Z_1} \frac{1}{\cos \theta}\right)^2}}$$
For $\frac{\pi}{2} - d < \theta < \frac{\pi}{2} + d \Rightarrow \cos \theta \approx 0, \frac{1}{\cos \theta}$? 1

2

2

 $\left|\Gamma\right| \approx \frac{\left|Z_{L} - Z_{1}\right|}{2\sqrt{2}} \left|\cos\theta\right|$

$$\theta_m = \arccos \left| \frac{2 |\Gamma_m| \sqrt{Z_L Z_1}}{(Z_L - Z_1) \sqrt{1 - |\Gamma_m|^2}} \right|$$

©J. Piotr Starski

Single section quarter wave transformer

Figure 5.12 © John Wiley & Sons, Inc. All rights reserved.

Theory of small reflections

8

 On white board: derive the overall reflection coefficient for a multi-section transformer, assuming small reflections.

Theory of small reflections

Assume constant characteristic impedance (frequency independent) Neglect influence from junctio

For small reflections -> only first order reflections needed

Multisection quarter-wave transformers

$$\Gamma = \rho_0 + \rho_1 e^{-2j\theta} + \rho_2 e^{-4j\theta} + \dots + \rho_n e^{-2jn\theta} + \dots + \rho_N e^{-2jN\theta}$$

$$\Gamma_0 = \frac{Z_1 - Z_0}{Z_1 + Z_0} = \rho_0$$

$$\Gamma_1 = \frac{Z_2 - Z_1}{Z_2 + Z_1} = \rho_1$$

$$\dots$$

$$\Gamma_n = \frac{Z_{n+1} - Z_n}{Z_{n+1} + Z_n} = \rho_n$$

$$\dots$$

MCC121_2014_lecture_7.key - 20 november 2014

Symmetrical transformer

 $\rho_0 = \rho_N, \rho_1 = \rho_{N-1}, \rho_2 = \rho_{N-2}, \dots, \rho_n = \rho_{N-n}, \dots$

$$\Gamma = e^{-jN\theta} \begin{bmatrix} \rho_0 \left(e^{jN\theta} + e^{-jN\theta} \right) + \rho_1 \left(e^{j(N-2)\theta} + e^{-j(N-2)\theta} \right) + \dots + \begin{cases} \rho_{\frac{(N-1)}{2}} \left(e^{j\theta} + e^{-j\theta} \right) \\ \frac{\rho_N}{2} \end{bmatrix} N \text{ odd} \\ N \text{ even} \end{cases}$$

$$\Gamma = 2e^{-jN\theta} \begin{bmatrix} \rho_0 \cos N\theta + \rho_1 \cos(N-2)\theta + \dots + \begin{cases} \frac{\rho_{(N-1)} \cos \theta}{2} & N \text{ odd} \\ \frac{1}{2}\rho_{\frac{N}{2}} & N \text{ even} \end{cases}$$
(1)

Equation (1) is a cosine series; the function it defines is periodic over the interval π corresponding to the frequency range over which the length of each transformer section changes by a $\lambda/2$.

It is possible to specify Γ in different ways e.g.: Butterworth (maximally flat) or Chebyshev (equal ripple) for the passband characteristics.

Binomial transformer

Butterworth approximation \implies maximally flat

$$\Gamma = A \left(1 + e^{-2j\theta} \right)^N \qquad (1)$$

(N-1)derivatives of $|\Gamma| = \rho$ with respect to frequency vanish (=0) at the matching frequency f_0 where $\theta = \pi/2$

When $\theta = 0$ or $\theta = \pi$

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} \stackrel{(1)}{=} 2^N A \implies A = 2^{-N} \frac{Z_L - Z_0}{Z_L + Z_0} \quad (2)$$

Expand (1) by the binomial expansion

$$\Gamma = 2^{-N} \frac{Z_L - Z_0}{Z_L + Z_0} (1 + e^{-2j\theta})^N = 2^{-N} \frac{Z_L - Z_0}{Z_L + Z_0} \sum_{n=0}^N C_n^N e^{-2jn\theta}, \quad C_n^N = \frac{N!}{(N-n)!n!}$$

$$C_n^N = C_n^N \quad \text{symmetry condition is fulfilled}$$

©J. Piotr Starski

Compare with multisection transformer

$$\Gamma = \rho_0 + \rho_1 e^{-2j\theta} + \rho_2 e^{-4j\theta} + \dots + \rho_n e^{-2jn\theta} + \dots + \rho_N e^{-2jN\theta}$$
$$\rho_n = 2^{-N} \frac{Z_L - Z_0}{Z_L + Z_0} C_n^N$$

To calculate Z_n we start with an approximation

$$\ln \frac{1+x}{1-x} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots\right)$$
$$x = \frac{Z_{n+1} - Z_n}{Z_{n+1} + Z_n} = \rho_n$$
$$\ln \frac{1+x}{1-x} = \ln \frac{1 + \frac{Z_{n+1} - Z_n}{Z_{n+1} + Z_n}}{1 - \frac{Z_{n+1} - Z_n}{Z_{n+1} + Z_n}} = \ln \frac{Z_{n+1}}{Z_n}$$

$$\ln \frac{Z_{n+1}}{Z_n} \approx 2 \frac{Z_{n+1} - Z_n}{Z_{n+1} + Z_n} = 2 \rho_n = 2^{-N} C_n^N \ln \frac{Z_L}{Z_0}$$
$$\ln \frac{Z_L}{Z_0} = 2 \frac{Z_L - Z_0}{Z_L + Z_0} + \frac{2}{3} \left(\frac{Z_L - Z_0}{Z_L + Z_0} \right)^3 + \dots \approx 2 \frac{Z_L - Z_0}{Z_L + Z_0}$$

Since the theory is approximate the range of $Z_{\rm L}$ is limited to

$$0.5 Z_0 < Z_L < 2 Z_0$$

©J. Piotr Starski

Bandwidth (binomial)

$$|\Gamma_{m}| = \rho_{m} = \frac{1}{2} \ln \frac{Z_{L}}{Z_{0}} (\cos \theta_{m})^{N}$$

$$\theta_{m} = \arccos \left| \frac{2\rho_{m}}{\ln \frac{Z_{L}}{Z_{0}}} \right|^{\frac{1}{N}}$$

$$\frac{\Delta f}{f_{0}} = \frac{2(f_{m} - f_{0})}{f_{0}} = 2 - \frac{4}{\pi} \arccos \left| \frac{2\rho_{m}}{\ln \frac{Z_{L}}{Z_{0}}} \right|^{\frac{1}{N}}$$

 On white board: design a binomial transformer to match a 50 ohm load to a 100 ohm line, using three sections.

Ex) Frequency response Binomial transformer

from Pozar

Chebyshev transformer

We permit $|\Gamma| = \rho$ to vary between 0 and ρ_m in an oscillatory manner over the passband, which will be described by a Chebyshev polynomial.

This will provide a considerable increase in bandwidth of the transformer as compared to the Butterworth case.

©J. Piotr Starski

Chebyshev polynomial of degree *n*, $T_n(x)$

©J. Piotr Starski

Ex) Frequency response Chebyshev transformer

from Pozar, "Microwave Engineering"

Chebysheff transformer, recap

$$\Gamma = 2e^{-jN\theta} \left[\rho_0 \cos N\theta + \rho_1 \cos(N-2)\theta + \dots + \begin{cases} \rho_{N/2} / 2 (N \text{ even}) \\ \rho_{N-1/2} \cos \theta (N \text{ odd}) \end{cases} \right] = Ae^{-jN\theta} T_N \left(\sec \theta_m \cos \theta \right)$$

A is calculated for $\theta = 0$

$$\Gamma(0) = AT_N(\sec\theta_m) = \frac{Z_L - Z_0}{Z_L + Z_0}$$
$$A = \frac{Z_L - Z_0}{Z_L + Z_0} \left[T_N(\sec\theta_m)\right]^{-1}$$

For $|\Gamma_m| = \rho_m$ in the passband $\rho_m = A$ since $T_N(\sec \theta_m \cos \theta)|_{\max} = 1$

$$\sec \theta_m = \cosh \left(\frac{1}{N} \operatorname{arccosh} \left(\frac{1}{\rho_m} \left| \frac{Z_L - Z_0}{Z_L + Z_0} \right| \right) \right)$$

©J. Piotr Starski

²¹ Practise as part of Lab 3

Binomial transformer design

IADLE 3.1 DINUMAI ITANSIUME DESE	TABLE 5.1	Binomial	Transformer	Desig
----------------------------------	-----------	----------	-------------	-------

		N =	2	N = 3				N = 4			
Z_{i}	L/Z_0	Z_1/Z_0	Z_{2}/Z_{0}	Z_1/Z_0	Z_{2}/Z_{0}	Z_{3}/Z_{0}	Z_1/Z_0	Z_{2}/Z_{0}	Z_{3}/Z_{0}	Z_4/Z	Z ₀ .
	1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000)0
	1.5	1.1067	1.3554	1.0520	1.2247	1.4259	1.0257	1.1351	1.3215	1.462	24
	2.0	1.1892	1.6818	1.0907	1.4142	1.8337	1.0444	1.2421	1.6102	1.915	50
	3.0	1.3161	2.2795	1.1479	1.7321	2.6135	1.0718	1.4105	2.1269	2.799	0
	4.0	1.4142	2.8285	1.1907	2.0000	3.3594	1.0919	1.5442	2.5903	3.663	33
	6.0	1.5651	3.8336	1.2544	2.4495	4.7832	1.1215	1.7553	3.4182	5.350	00
	8.0	1.6818	4.7568	1.3022	2.8284	6.1434	1.1436	1.9232	4.1597	6.995	55
J	10.0	1.7783	5.6233	1.3409	3.1623	7.4577	1.1613	2.0651	4.8424	8.611	10
	l	N = 5					N = 6				
Z_L/Z_0	Z_1/Z_0	Z_2/Z_0	Z_{3}/Z_{0}	Z_{4}/Z_{0}	Z_{5}/Z_{0}	Z_{1}/Z_{0}	Z_2/Z_0	Z_{3}/Z_{0}	Z_4/Z_0	Z_{5}/Z_{0}	Z_6/Z_0
1.0	1.0000) 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.5	1.0128	8 1.0790	1.2247	1.3902	1.4810	1.0064	1.0454	1.1496	1.3048	1.4349	1.4905
2.0	1.0220	1.1391	1.4142	1.7558	1.9569	1.0110	1.0790	1.2693	1.5757	1.8536	1.9782
3.0	1.0354	4 1.2300	1.7321	2.4390	2.8974	1.0176	1.1288	1.4599	2.0549	2.6577	2.9481
4.0	1.0452	2 1.2995	2.0000	3.0781	3.8270	1.0225	1.1661	1.6129	2.4800	3.4302	3.9120
6.0	1.0596	5 1.4055	2.4495	4.2689	5.6625	1.0296	1.2219	1.8573	3.2305	4.9104	5.8275
8.0	1.0703	3 1.4870	2.8284	5.3800	7.4745	1.0349	1.2640	2.0539	3.8950	6.3291	7.7302
10.0	1.0789	9 1.5541	3.1623	6.4346	9.2687	1.0392	1.2982	2.2215	4.5015	7.7030	9.6228

from Pozar, "Microwave Engineering"

CHALMERS

Chebyshev transformer design

		N = 2				N = 3						
	$\Gamma_m =$	0.05	$\Gamma_m =$	0.20		$\Gamma_{m} = 0.05$	5		$\Gamma_m = 0.20$			
Z_L/Z_0	Z_{1}/Z_{0}	Z_{2}/Z_{0}	Z_{1}/Z_{0}	Z_2/Z_0	Z_{1}/Z_{0}	Z_{2}/Z_{0}	Z_{3}/Z_{0}	Z_{1}/Z_{0}	Z_2/Z_0	Z_{3}/Z_{0}		
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
1.5	1.1347	1.3219	1.2247	1.2247	1.1029	1.2247	1.3601	1.2247	1.2247	1.2247		
2.0	1.2193	1.6402	1.3161	1.5197	1.1475	1.4142	1.7429	1.2855	1.4142	1.5558		
3.0	1.3494	2.2232	1.4565	2.0598	1.2171	1.7321	2.4649	1.3743	1.7321	2.1829		
4.0	1.4500	2.7585	1.5651	2.5558	1.2662	2.0000	3.1591	1.4333	2.0000	2.7908		
6.0	1.6047	3.7389	1.7321	3.4641	1.3383	2.4495	4.4833	1.5193	2.4495	3.9492		
8.0	1.7244	4.6393	1.8612	4,2983	1.3944	2.8284	5.7372	1.5766	2.8284	5.0742		
10.0	1.8233	5.4845	1.9680	5.0813	1.4385	3.1623	6.9517	1.6415	3.1623	6.0920		

3.7		
£V.	-	

		$\Gamma_m =$	0.05		$\Gamma_m = 0.20$				
Z_L/Z_0	Z_{1}/Z_{0}	Z_2/Z_0	Z_3/Z_0	Z_4/Z_0	Z_{1}/Z_{0}	Z_{2}/Z_{0}	Z_{3}/Z_{0}	Z_{4}/Z_{0}	
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1.5	1.0892	1.1742	1.2775	1.3772	1.2247	1.2247	1.2247	1.2247	
2.0	1.1201	1.2979	1.5409	1.7855	1.2727	1.3634	1.4669	1.5715	
3.0	1.1586	1.4876	2.0167	2.5893	1.4879	1.5819	1.8965	2.0163	
4.0	1.1906	1.6414	2.4369	3.3597	1.3692	1.7490	2.2870	2.9214	
6.0	1.2290	1.8773	3.1961	4.8820	1.4415	2.0231	2.9657	4.1623	
8.0	1.2583	2.0657	3.8728	6.3578	1.4914	2.2428	3.5670	5.3641	
10.0	1.2832	2.2268	4.4907	7.7930	1.5163	2.4210	4.1305	6.5950	

from Pozar, "Microwave Engineering"

CHALMERS

Junction capacitance and length compensation

Derive correction.

Tapered transformer

(a)

$$d\Gamma_{in} = e^{-2j\beta z} \frac{1}{2} \frac{d}{dz} (\ln Z) dz$$

$$\Gamma_{in} = \int_{0}^{L} d\Gamma_{in} = \frac{1}{2} \int_{0}^{L} e^{-2j\beta z} \frac{d}{dz} (\ln Z) dz \quad (1)$$

Exponential taper

We assume that β is constant and not a function of z

26

Triangular taper

©J. Piotr Starski

Comparison-tapers

Figure 5.21 © John Wiley & Sons, Inc. All rights reserved.

Summary of lecture 7

- Read chapter 5 (impedance matching).
 - Quarter wave transformers
 - Theory of small reflections
 - Chebyshev, Binomial transformers
 - Tapered transformers
 - length compensation due to fringing fields at junctions

VERSITY OF TECHNO

Further reading

- R.W. Klopfenstein, "A Transmission Line Taper of Improved Design," in Proceedings of the IRE, 1956, vol. 44, no. 1, pp. 31–35.
- A wide range of applets on transmission lines, electromagnetic waves and antennas: <u>http://www.amanogawa.com/index.html</u>