

CHALMERS

Future?

Microwave road - Welcome to Microwaveroad
C Lasare 0
Chalmers * Wasa * Resa * Forskningstrid *

MICROWAVE ROAD IS A NATIONAL CLUSTER FOCUSING ON

 INTERNATIONAL TECHNOLOGY AND MARKET DEVELOPMENT UNITING INDUSTRY, UNIVERSITIES, RESEARCH INSTITUTES AND REGIONAL AND NATIONAL PUBLIC AUTHORITIES.Home About Events Board

Events

- 2012.11.08-2012.11.08 | 15.00
'Mini-măssa torsdagen
den 8 november, 2012

News

Successful update on assembly methods above 506 Hz

- Microwaves in medical instruments
MWR at Elektronik
2011 in Gothenburg

SP Sveriges Tekniska Forkningsinstitut

 CD ${ }^{\mu}$ technologies, material, products and processes to meet its customer's needs and provide an to meet its customer's needs and proveffective link between research and commercialization.

For further information please visit our web site: www.sp.se

\# =uramı
www.eumweek.com
www.euma.org
www.businessregion.se

Archive

- May, 2010
- April, 2010
- January, 2010
- December, 2009

Microwave Road member companies

Outline

- Summary of n-port representations (Ch4)
- Impedance matching (Ch5.I-5.4)
- Smith chart
- Stub matching
- Lumped element matching

Objectives

On completion of this course unit you should be able to:
I Analyse wave propagating properties of guided wave structures (TE,TM, TEM waves, microstrip, stripline, rectangular and circular waveguides, coupled lines)
IV Apply N -port representations for analysing microwave circuits
I] Apply the Smith chart to evaluate microwave networks
\square Design and evaluate impedance matching networks
\square Design, evaluate and characterise directional couplers and power dividers

Design and analyse attenuators, phase shifters and resonators
\square Explain basic properties of ferrite devices (circulators, isolators)

One-port circuit

- energy can enter or leave through a single propagation line
- Introduce input impedance, $Z_{\text {in }}$

Impedance description

Assume now perfectly conductive walls, $\sigma=\infty, E_{\text {tan }}=0$ on all walls but t.

$$
\frac{1}{2} \oint_{t} \bar{E} \times \bar{H} \cdot \bar{a}_{z} d S=P_{l o s s}+2 j \omega\left(W_{m}-W_{e}\right)
$$

At the terminal plane t the transverse fields are

$$
\begin{aligned}
& \bar{E}_{t}=K_{1}^{-1}\left(V^{+}+V^{-}\right) \bar{e}=K_{1}^{-1} V \bar{e} \\
& \bar{H}_{t}=K_{2}^{-1}\left(I^{+}-I^{-}\right) \bar{h}=K_{2}^{-1} I \bar{h}
\end{aligned}
$$

Thus $\quad \frac{1}{2}\left(K_{1} K_{2}^{*}\right)^{-1} V I^{*} \int_{t} \bar{e} \times \bar{h}^{*} \cdot \bar{a}_{z} d S=\frac{1}{2} V I^{*}=P_{\text {loss }}+2 j \omega\left(W_{m}-W_{e}\right)$

We have now $V=Z_{\text {in }} I$

$$
\begin{aligned}
& Z_{i n}=\frac{P_{\text {loss }}+2 j \omega\left(W_{m}-W_{e}\right)}{1 / 2 I I^{*}}=R+j X \\
& Z_{\text {in }}=f\left(P_{\text {loss }}, W_{m}-W_{e}\right)
\end{aligned}
$$

If $W_{m}>W_{e} \Longrightarrow X>0$, inductive one-port
If $W_{m}<W_{e} \longrightarrow X<0$, capacitive one-port

Scattering matrix [S]

[S] can be measured using a Vector Network
Analyser (VNA), even at very high frequencies.

Impedance matrix

- let the terminal planes be choses sufficiently far from the junction=> only dominant incident and reflected waves. =>equivalent voltages and currents
- Use total current as independent variables and total voltages as dependent variables, hence linear combination can be written as:

$$
\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\cdot \\
\cdot \\
V_{N}
\end{array}\right]=\left[\begin{array}{ccccc}
z_{11} & z_{12} & \cdot & \cdot & z_{1 N} \\
z_{21} & z_{22} & \cdot & \cdot & z_{2 N} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
z_{N 1} & z_{N 2} & \cdot & \cdot & z_{N N}
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\cdot \\
\cdot \\
I_{N}
\end{array}\right]
$$

Properties

- Non reciprocal circuit: $Z_{i j} \neq Z_{\mathrm{ji}}$ unsymmetrical impedance matrix ($2 \mathrm{~N}^{2}$ parameters)
- Reciprocal circuit: $\mathrm{Z}_{\mathrm{ij}}=\mathrm{Z}_{\mathrm{ij}}=>$ symmetrical impedance matrix ($\mathrm{N}(\mathrm{N}+\mathrm{I})$ parameters)
- Lossless circuit: symmetrical and imaginary [Z] ($\mathrm{N}(\mathrm{N}+\mathrm{I}) / 2$ parameters)
- Same applies to $[\mathrm{Y}]=[Z]^{-1}$

$$
\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\cdot \\
\cdot \\
V_{N}
\end{array}\right]=\left[\begin{array}{ccccc}
z_{11} & z_{12} & \cdot & \cdot & z_{1 N} \\
z_{21} & z_{22} & \cdot & \cdot & z_{2 N} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
z_{N 1} & z_{N 2} & \cdot & \cdot & z_{N N}
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\cdot \\
\cdot \\
I_{N}
\end{array}\right]
$$

Properties of the S-matrix

- Reciprocal if ([S] symmetric)

$$
[S]=[S]^{t}
$$

- Lossless if: ([S] is unitary, [U] is the unit diagonal

$$
[S]^{t}[S]^{*}=[U]
$$ matrix)

Shift of the reference plane

- Two port case:

$$
\begin{aligned}
& {\left[S^{\prime}\right]=[\Phi] \cdot[S] \cdot[\Phi],[\Phi]=\left[\begin{array}{cc}
e^{-j \cdot \beta \cdot l_{1}} & 0 \\
0 & e^{-j \cdot \beta \cdot l_{2}}
\end{array}\right]} \\
& \text { or }[S]=[\Phi]^{-1} \cdot\left[S^{\prime}\right] \cdot[\Phi]^{-1} \\
& {[S]=\left[\begin{array}{cc}
e^{j \cdot \beta \cdot l_{1}} & 0 \\
0 & e^{j \cdot \beta \cdot l_{2}}
\end{array}\right] \cdot\left[S^{\prime}\right] \cdot\left[\begin{array}{cc}
e^{j \cdot \beta \cdot l_{1}} & 0 \\
0 & e^{j \cdot \beta \cdot l_{2}}
\end{array}\right]}
\end{aligned}
$$

Cascaded components

- For cascaded components a convenient way to describe the connection is to use transmission matrices (sometimes called ABCD matrices)

(a)

(b)

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\frac{z_{11}}{z_{12}} & \frac{\left(z_{11} z_{22}-z_{12}^{2}\right)}{z_{12}} \\
\frac{1}{z_{12}} & \frac{z_{22}}{z_{12}}
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right)\left(\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right)
$$

For reciprocal junctions $A D-B C=1$

(a)

(b)

TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Circuit	ABCD Parameters	
	$\begin{aligned} & A=1 \\ & C=0 \end{aligned}$	$\begin{aligned} & B=Z \\ & D=1 \end{aligned}$
$\bigcirc \longrightarrow$		
	$\begin{aligned} & A=1 \\ & C=Y \end{aligned}$	$\begin{aligned} B & =0 \\ D & =1 \end{aligned}$
	$\begin{aligned} & A=\cos \beta \ell \\ & C=j Y_{0} \sin \beta \ell \end{aligned}$	$\begin{aligned} B & =j Z_{0} \sin \beta \ell \\ D & =\cos \beta \ell \end{aligned}$
	$\begin{aligned} & A=N \\ & C=0 \end{aligned}$	$\begin{aligned} B & =0 \\ D & =\frac{1}{N} \end{aligned}$
	$\begin{aligned} A & =1+\frac{Y_{2}}{Y_{3}} \\ C & =Y_{1}+Y_{2}+\frac{Y_{1} Y_{2}}{Y_{3}} \end{aligned}$	$\begin{aligned} B & =\frac{1}{Y_{3}} \\ D & =1+\frac{Y_{1}}{Y_{3}} \end{aligned}$
	$\begin{aligned} & A=1+\frac{Z_{1}}{Z_{3}} \\ & C=\frac{1}{Z_{3}} \end{aligned}$	$\begin{aligned} & B=Z_{1}+Z_{2}+\frac{Z_{1} Z_{2}}{Z_{3}} \\ & D=1+\frac{Z_{2}}{Z_{3}} \end{aligned}$

Conversion table

	s	s	z	y	h	$A B C D$	
		$\begin{array}{ll} s_{11} & s_{12} \\ s_{21} & s_{22} \end{array}$	$\begin{aligned} & s_{11}=\frac{\left(z_{11}-1\right)\left(z_{22}^{\prime}+1\right)-z_{12}^{\prime} z_{21}}{\Delta_{1}} \\ & s_{12}=\frac{2 z_{12}^{\prime}}{\Delta_{1}} \\ & s_{21}=\frac{2 z_{21}}{\Delta_{1}} \\ & s_{22}=\frac{\left(z_{11}+1\right)\left(z_{22}^{\prime}-1\right)-z_{12}^{\prime} z_{21}^{\prime}}{\Delta_{1}} \end{aligned}$	$\begin{aligned} & s_{11}=\frac{\left(1-y_{11}^{\prime}\right)\left(1+y_{22}^{\prime}\right)+y_{12} y_{21}}{\Delta_{2}} \\ & s_{12}=\frac{-2 y_{12}^{\prime}}{\Delta_{2}} \\ & s_{21}=\frac{-2 y_{21}}{\Delta_{2}} \\ & s_{22}=\frac{\left(1+y_{11}\right)\left(1-y_{22}^{\prime}\right)+y_{12}^{\prime} y_{21}}{\Delta_{2}} \end{aligned}$	$\begin{aligned} & S_{11}=\frac{\left(H_{11}-1\right)\left(H_{22}+1\right)-H_{12} H_{21}}{\Delta_{3}} \\ & S_{12}=\frac{2 H_{12}}{\Delta_{3}} \\ & S_{21}=\frac{-2 H_{21}}{\Delta_{3}} \\ & S_{22}=\frac{\left(1+H_{11}\right)\left(1-H_{22}\right)+H_{12} H_{21}}{\Delta_{3}} \end{aligned}$	$\frac{A^{\prime}+B^{\prime}-C-D^{\prime}}{\Delta_{4}}$ $\frac{2}{\Delta_{4}}$	$\frac{2\left(A^{\prime} D^{\prime}-B^{\prime} C\right)}{\Delta_{4}}$ $\frac{-A^{\prime}+B^{\prime}-G+D^{\prime}}{\Delta_{4}}$
	z	$\begin{aligned} & z_{11}^{\prime}=\frac{\left(1+S_{11}\right)\left(1-S_{22}\right)+S_{12} S_{21}}{\Delta_{5}} \\ & z_{12}^{\prime}=\frac{2 S_{12}}{\Delta_{5}} \\ & z_{21}^{\prime}=\frac{2 S_{21}}{\Delta_{5}} \\ & z_{22}=\frac{\left(1-S_{11}\right)\left(1+S_{22}\right)+S_{12} S_{21}}{\Delta_{5}} \end{aligned}$	$\begin{array}{ll} z_{11} & z_{12} \\ z_{21} & z_{22} \end{array}$	$\begin{array}{cc} \frac{y_{2}}{\|y\|} & \frac{-y_{12}}{\|y\|} \\ \frac{-y_{21}}{\|y\|} & \frac{y_{11}}{\|y\|} \end{array}$	$\begin{array}{ll} \frac{1 h_{1}}{h_{22}} & \frac{h_{12}}{h_{22}} \\ \frac{-h_{21}}{h_{22}} & \frac{1}{h_{22}} \end{array}$	$\begin{aligned} & \frac{A}{C} \\ & \frac{1}{C} \end{aligned}$	$\stackrel{\Delta}{c}$ $\frac{D}{C}$
	y	$\begin{aligned} & y_{11}^{\prime}=\frac{\left(1-S_{11}\right)\left(1+S_{22}\right)+S_{12} S_{21}}{\Delta_{6}} \\ & y_{12}^{\prime}=\frac{-2 S_{12}}{\Delta_{6}} \\ & y_{21}^{\prime}=\frac{-2 S_{21}}{\Delta_{0}} \\ & y_{22}^{\prime}=\frac{\left(1+S_{11}\right)\left(1-S_{22}\right)+S_{12} S_{21}}{\Delta_{6}} \end{aligned}$	$\begin{array}{ll} \frac{z_{22}}{\|z\|} & \frac{-z_{12}}{\|z\|} \\ \frac{-z_{21}}{\|z\|} & \frac{z_{11}}{\|z\|} \end{array}$	$\begin{array}{ll} y_{11} & y_{12} \\ y_{21} & y_{22} \end{array}$	$\begin{array}{ll} \frac{1}{h_{11}} & -\frac{h_{12}}{h_{11}} \\ \frac{h_{21}}{h_{11}} & \frac{\|h\|}{h_{11}} \end{array}$	$\begin{gathered} \frac{D}{B} \\ \frac{-1}{B} \end{gathered}$	$\begin{aligned} & \frac{-A_{B}}{B} \\ & \frac{A}{B} \end{aligned}$
	h	$\begin{aligned} & H_{11}=\frac{\left(1+S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21}}{\Delta_{7}} \\ & H_{12}=\frac{2 S_{12}}{\Delta_{7}} \\ & H_{21}=\frac{-2 S_{21}}{\Delta_{7}} \\ & H_{22}=\frac{\left(1-S_{11}\right)\left(1-S_{22}\right)-S_{12} S_{21}}{\Delta_{7}} \end{aligned}$	$\begin{array}{ll} \frac{\|z\|}{z_{22}} & \frac{z_{12}}{z_{22}} \\ \frac{-z_{21}}{z_{22}} & \frac{1}{z_{22}} \end{array}$	$\begin{array}{ll} \frac{1}{y_{11}} & \frac{-y_{12}}{y_{11}} \\ \frac{y_{21}}{y_{11}} & \frac{\|y\|}{y_{11}} \end{array}$	$\begin{array}{ll} t_{11} & t_{12} \\ h_{21} & t_{22} \end{array}$	$\begin{gathered} \frac{B}{D} \\ \frac{-1}{D} \end{gathered}$	$\begin{aligned} & \frac{-\Delta_{B}}{D} \\ & \frac{C}{D} \end{aligned}$
	ABCD	$\begin{aligned} & A^{\prime}=\frac{\left(1+S_{11}\right)\left(1-S_{22}\right)+S_{12} S_{21}}{2 S_{21}} \\ & B^{\prime}=\frac{\left(1+S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21}}{2 S_{21}} \\ & C=\frac{\left(1-S_{11}\right)\left(1-S_{22}\right)-S_{12} S_{21}}{2 S_{21}} \\ & D^{\prime}=\frac{\left(1-S_{11}\right)\left(1+S_{22}\right)+S_{12} S_{21}}{2 S_{21}} \end{aligned}$	$\begin{array}{ll} \frac{z_{11}}{z_{21}} & \frac{\|z\|}{z_{21}} \\ \frac{1}{z_{21}} & \frac{z_{22}}{z_{21}} \end{array}$	$\begin{array}{ll} \frac{-y / 2}{y y_{21}} & \frac{-1}{y_{21}} \\ \frac{-\|y\|}{y_{21}} & \frac{-y_{11}}{y_{21}} \end{array}$	$\begin{array}{ll} \frac{-1 n 1}{h_{21}} & \frac{-h_{11}}{h_{21}} \\ \frac{-h_{21}}{h_{21}} & \frac{-1}{h_{21}} \end{array}$	A c	B D
MCCI2I/ J. Stake		$\begin{aligned} & \Delta_{1}=\left(z_{11}^{\prime}+1\right)\left(z_{22}^{\prime}+1\right)-z_{12} z_{21} z_{21} \\ & \Delta_{2}=\left(1+y_{11}\right)\left(1+y_{22}\right)-y_{12} y_{21} \\ & A_{3}=\left(h_{11}+1\right)\left(W_{22}+1\right)-H_{12} H_{21} \\ & \Delta_{4}=A^{\prime}+B^{+}+C+D \\ & A_{5}=\left(1-S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21} \\ & \Delta_{5}=\left(1+S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21} \\ & \Delta_{7}=\left(1-S_{11}\right)\left(1+S_{22}\right)+S_{12} S_{21} . \\ & \Delta_{0}=A D-B C \end{aligned}$		$\begin{aligned} & \left(z_{0} z_{21}=z_{21} / z_{0}, z_{22}=z_{22} / z_{0}\right. \\ & z_{0} y_{21}=y_{21} z_{0}, y^{\prime 22}=y_{22} z_{0} \\ & 2, H_{21}=H_{212}, h_{22}=h_{22} z_{0} \\ & =Z_{0} D=0 \end{aligned}$		e Gonzalez	z, page 62.

Smith chart

Impedance transformation and matching

- to match an arbitrary load to a given transmission line
- to present a certain impedance to a device (embedding impedances)

For low VSWR, energy transfer or design goals

Low VSWR results

 in better power handling capabilityDistributed components
OSingle, double or triple stubs
Transformers

Discrete components

The Smith Chart (SC)

- Proposed 1939 by Philip H. Smith as a graphical aid to analyse and design matching networks
- Mr. Smith worked at Bell Telephone labs with impedance matching of antennas (for AM broadcasting)
- Today, still a powerful tool as part of the design process in order to find suitable circuit topologies etc

Z or impedance SC

Conformal mapping (Möbius)

- Z Smith chart: $\quad \Gamma=\frac{z-1}{z+1}$
- Y Smith chart: $\quad \Gamma=\frac{1-y}{1+y}$

Complex impedance transformed to complex reflection plane

Y or admittance SC

The Smith Chart

- Complex plane for the reflection coefficient.
- Normalised contours for resistances/ conductances and reactances/susceptances
- Upper half->inductive, lower half->capacitive
- Common practice to plot S-parameters in Smith charts. E.g.Vector network analysers or design tools

ZY Smith Chart

- Z for series connections
- Y for parallel
 connections

Single stub matching (series)

- On white board: Use SC to match $z=2+j 1.6$ using an open series stub

- On white board: Use SC to match $z=0.3+j 0.2$ using an open parallel stub

Transmission line matching

(b)

(c)

Electrically small circuit->wider bandwidth!

Double-stub tuner

- Rotate $g=1$ circle counter clock wise, so the first stub (jb_{I}) can transform your load
 to the rotated circle
- require no variable length between load and stubs
- But!, forbidden region

from RF Circuit design, Ludvig and Bogdanov
- On white board: Use SC to match I+j using double, shorted stubs. Distance between stubs 3/8 wavelengths, and I/8 wavelength between load and first stub.

E-H Tuners

E-stub-> series reactance

(a)

(b) H -stub-> parallel susceptance

Triple-stub tuner

Function of stub 1 is to ensure, that the $y_{L}^{\prime}=g_{L}^{\prime}+j b_{L}^{\prime}$ has $g_{L}^{\prime}<\boldsymbol{c s c}^{2} b d$

Matching with lumped elements

Capacitors

$$
l=\lambda / 4, C<1 \mathrm{pF}
$$

MIM(metal-insulator-metal),
MMIC compatible, $C<20-30 \mathrm{pF}$

Inductors

We assume $l=\lambda$ and TEM wave

$$
\begin{align*}
& Z_{c}=\sqrt{\frac{L}{C}}, \beta=\omega \sqrt{L C} \\
& X_{L}=\omega L=\beta Z_{c}=k_{0} Z_{c 0} \Omega / m \tag{1}
\end{align*}
$$

Eq (1) shows that narrow lines (high impedance) should be used for inductors since

$$
L \nearrow \text { if } Z_{c 0} \nearrow
$$

Matching circuits

$$
R_{L}>Z_{c} \quad R_{L}<Z_{c}
$$

$$
Y_{L}=G_{L}+j B_{L}
$$

$$
\begin{aligned}
& Z_{i n}=Z_{c} \\
& X_{2}= \pm\left(\frac{Z_{c}}{G_{L}}\left(1-Z_{c} G_{L}\right)\right)^{1 / 2} \\
& B_{1}=-B_{L} \pm\left(\frac{G_{L}}{Z_{c}}\left(1-Z_{c} G_{L}\right)\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{\text {in }}=Z_{c} \\
& X_{1}= \pm\left(R_{L}\left(Z_{c}-R_{L}\right)\right)^{1 / 2}-X_{L} \\
& B_{2}= \pm \frac{1}{Z_{c}}\left(\frac{Z_{c}-R_{L}}{R_{L}}\right)^{1 / 2}
\end{aligned}
$$

- On white board: Use SC to match 100 + jl00 ohm using L and C, to a 50 ohm transmission line.

Circuit Q and bandwidth

$Z_{i n}=Z_{c}$ matching circuit

$Z_{L}=R_{L}+j X_{L}$

Reactive components in Z_{L} and matching circuit form a resonance circuit loaded with R_{L} and Z_{c} with a quality factor Q :

$$
Q=\frac{\omega(\text { average stored electric and magnetic energy })}{\text { power loss }}
$$

At resonance:

$$
\begin{aligned}
& W_{m}=W_{e} \\
& Q=\omega \frac{2 W_{e}}{P_{\text {loss }}}=\omega \frac{2 W_{m}}{P_{\text {loss }}}
\end{aligned}
$$

The bandwidth of the circuit is the frequency band, Δf over which $1 / 2$ or more (3 dB) of the maximum power is delivered to the load (it is inversely proportional to the loaded Q)

$$
\begin{aligned}
& V_{R_{L}}=\frac{I_{g}}{Y_{i n}}=\frac{I_{g}}{G_{L}+j \omega C-j / \omega L} \\
& \omega_{0}=\frac{1}{\sqrt{L C}} \\
& Y_{i n}=G_{L}+j \omega C\left(\frac{\omega^{2}-\omega_{0}^{2}}{\omega^{2}}\right)
\end{aligned}
$$

At resonance $\omega=\omega_{0}$

$$
V_{R_{L}}=\left.\frac{I_{g}}{G_{L}} \rightarrow V_{\max }\right|_{\text {load }} \rightarrow P_{\max }
$$

At the band edges

$$
\begin{aligned}
& j \omega C \mathrm{~g}^{\omega^{2}-\omega_{0}^{2}} \omega^{2}=j G_{L} \\
& \left|V_{R_{L}}\right|=\frac{I_{g}}{\sqrt{2} G_{L}} \rightarrow P=1 / 2 P_{\max } \\
& Q=\frac{R_{L}}{\omega_{0} L}=R_{L} \omega_{0} C=\frac{\omega_{0} C}{G_{L}}
\end{aligned}
$$

Q>10

$$
\begin{aligned}
Y_{i n} & =G_{L}+j \omega C\left(\frac{\omega^{2}-\omega_{0}^{2}}{\omega^{2}}\right) \approx G_{L}+j \omega C \frac{2 \omega\left(\omega-\omega_{0}\right)}{\omega^{2}}= \\
& =G_{L}+j \omega_{0} C \frac{2\left(\omega-\omega_{0}\right)}{\omega_{0}}=G_{L}\left(1+2 j Q \Delta \omega / \omega_{0}\right)
\end{aligned}
$$

The 3-dB fractional BW:

$$
2 Q \frac{\Delta \omega}{\omega_{0}}=2 Q \frac{B W}{2}=1 \rightarrow B W=1 / Q
$$

In the matching problems there are generally two solutions possible:

- narrowband design \Longleftrightarrow high Q-value
- broadband design \Longleftrightarrow low Q-value

Summary of lecture 6

- Read chapter 5 (impedance matching).
- Smith chart
- Single, double and triple stub matching
- Discrete elements for matching
- Next: Impedance transformation (ch5)

Further reading

- A. Inan," "Remembering Phillip H. Smith on his 100th birthday," Antennas and Propagation Society International Symposium, 2005 IEEE, vol. 3, pp. I29-I32 vol. 3B, Jun. 2005.
- R. M. Fano, Theoretical limitations on the broadband matching of arbitrary impedances, no. 4I. I948.

