"a study of microwave circuits provides a deeper physical insight into conventional circuit theory" R E Collin $V_{3,}^{+}I_{3}^{+}$ Microwave Engineering \mathbf{vec} . MCCI 14 $V_{1}^{+}I_{1}^{+}$ $V_{4}^{+}I_{4}^{+}$ t_1 Lecture 5 $V_{4}^{-} - I_{4}^{-}$ $V_{1}^{-} - I_{1}^{-}$ l_{Δ} t_N Challenging Stimulating Rewarding

Notice

• Don't forget to register for the labs!

Outline

- Summary of transmission lines (Ch3)
- Circuit theory for waveguiding systems (Ch4)
 - Impedance matrix
 - Reciprocal, lossless networks
 - Scattering matrix
 - ABCD matrix

Objectives

On completion of this course unit you should be able to:

- Analyse wave propagating properties of guided wave structures (TE,TM, TEM waves, microstrip, stripline, rectangular and circular waveguides, coupled lines)
- Apply N-port representations for analysing microwave circuits
- Apply the Smith chart to evaluate microwave networks
- Design and evaluate impedance matching networks
- Design, evaluate and characterise directional couplers and power dividers
- Design and analyse attenuators, phase shifters and resonators
- Explain basic properties of ferrite devices (circulators, isolators)

CHALMERS UNIVERSITY OF TECHNOLOGY

Hollow waveguides

The integers n and m pertain to the number of standing-wave interference maxima occuring in the field solutions that describe the variation of the fields along the two transverse coordinates

 $f_{c,nm}$ corresponds to cut-off frequency below which the mode does not propagate; it is a geometrical parameter dependent on the waveguide cross-sectional configuration

Propagation factor β

$$\beta = \sqrt{k_0^2 - k_c^2}$$
$$k_0 = 2\pi f \sqrt{\mu_0 \varepsilon}, k_c = 2\pi f_c \sqrt{\mu_0 \varepsilon}$$

2010

©J. Piotr Starski

3

Dominant TE₁₀ mode

$$H_{z,10} = A \cos \frac{\pi x}{a} e^{-j\beta z}$$

$$H_{x,10} = A \frac{j\beta}{k_c} \sin \frac{\pi x}{a} e^{-j\beta z}$$

$$E_{y,10} = -AZ_{h,10} \frac{j\beta}{k_c} \sin \frac{\pi x}{a} e^{-j\beta z}$$

$$k_{c,10} = \frac{\pi}{a}, \beta_{10} = \sqrt{k_0^2 - \left(\frac{\pi}{a}\right)^2}$$

$$Z_{h,10} = -\frac{E_y}{H_x} = \frac{k_0}{\beta} Z_0$$

$$\lambda_g = \frac{2\pi}{\beta} = \frac{\lambda_0}{\sqrt{1 - (\lambda_0/2a)^2}}$$

 $\lambda_0 c$

 $v_p = \frac{\lambda_g}{\lambda_0} c, v_g =$

MCC121 / J. Stake

The concept of impedance

The term impedance was first used by Oliver Heaviside in the 19th century to describe the complex ratio V/I in AC circuits. In the 1930's Schelkunoff extended this concept to electromagnetic fields and noted that impedance should be regarded as characteristic of the type of field, as well as medium. The impedance may also be dependent on the direction of the propagating wave. The concept of impedance is an important link between field theory and transmission line theory.

• Intrinsic impedance of the medium,

 $Z_0 = \eta = \sqrt{\frac{\mu}{\varepsilon}}$

- Wave impedance; this impedance is a characteristic of the particular type of wave. TEM,TE,TM waves each have different wave impedances; they may depend on the type of the line or guide, the material, and frequency, $Z_w = E/H$
- Characteristic impedance is the ratio of voltage to current for a travelling wave; voltage and current are uniquely defined only for a TEM wave; TE and TM waves do not have uniquely defined voltage and current, so the characteristic impedance for such waves may be defined in various ways.

Circuit theory

- At low frequencies: Kirchoff's laws apply
- At high frequencies: propagation effects important
- Still! it is possible to utilise equivalent voltages and currents. But with the main difference that such voltage/current waves are not always uniquely defined.

"a study of microwave circuits provides a deeper physical insight into conventional circuit theory" R E Collin

Circuit theory cont.

 Hard and often impossible to measure v(t) and i(t) at high frequencies

TEM Wave

$$V = \int_{+} \overline{E} \bullet d\overline{l}, I = \oint_{C} \overline{H} \bullet d\overline{l}$$

----*Ĥ*

POZAR

 A unique impedance can be defined. Circuit theory directly applicable!

Waveguides: TE and TM modes

 On white board: Show that voltage, V, is not unique but depends on x, y. For a TEIO mode in a rectangular waveguide.

Equivalent voltage and current waves

- Power transmitted is given by an integral involving the transverse electric and magnetic fields only
- In a loss free guide supporting several modes, the power transmitted is the sum of that contributed by each mode individually
- The transverse field vary with distance along the guide according to $e^{\pm j\beta z}$
- The transverse magnetic field is related to the transverse electric field by a simple constant

$$Z_{\omega}\mathbf{h} = \mathbf{a}_{z} \times e$$

Fictitious transmission lines

$$V = \sum_{n=1}^{N} \left(V_n^+ e^{-j\beta_n z} + V_n^- e^{j\beta_n z} \right)$$
$$I = \sum_{n=1}^{N} \left(I_n^+ e^{-j\beta_n z} - I_n^- e^{j\beta_n z} \right) = \sum_{n=1}^{N} \left(Y_n V_n^+ e^{-j\beta_n z} - Y_n V_n^- e^{j\beta_n z} \right)$$

- A waveguide supporting N propagating modes, can be represented as N fictitious transmission lines supporting equivalent voltages and current waves
- Hence, when several modes are supported, the number of electrical ports will exceed the number of physical ports

VERSITY OF TECHNOL

Equivalent voltage, current and impedance

- Only for a particular mode, so $Z_{\omega}\mathbf{h} = \mathbf{a}_{\tau} \times e$
- Eq. V and I should be defined so their product gives the power flow of the particular mode
- The ratio should be equal to the characteristic impedance of the line (this selection is arbitrary, often equal to wave impedance)

Comment: Impedance concept

 On white board: Discuss common definitions such as Z_{PI}, Z_{VI}, and Z_{VP}.

Characteristic impedance ch4.1

- 1. Power-current definition: $Z_{pi}=2P/I^*I$
- 2. Power-voltage definition: $Z_{Pv} = V^* V/2P$
- 3. Voltage-current definition: $Z_{vi}=V/I=sqrt(Z_{pv} \times Z_{pi})$

E. Wollack, "TCHEB x: Homogeneous Stepped Waveguide Transformers," NRAO, EDTN Memo Series, vol. 176, 1996.

S.A. Schelkunoff, "Impedance concept in waveguides," Q.Appl. Math, vol. 2, no. 1, 1944.

Rectangular and circular waveguide impedances normalised to the wave impedance

Impedance	TE_{10}^{\Box}	TE_{11}°
Definition	$[\eta \lambda_g / \lambda_o]$	$[\eta\lambda_g/\lambda_o]$
Z_{EH}	1	1
Z_{PI}	$\pi^2 b/8a$	$\pi(1-s_{11}^2)/8$
Z_{VI}	$\pi b/2a$	$\int_0^{s_{11}} J_o(x) dx / J_1(s_{11}) - 1$
Z_{VP}	2b/a	2

One-port circuit

- energy can enter or leave through a single propagation line
- Introduce input impedance, Z_{in}

Impedance description

Assume now perfectly conductive walls, $\sigma = \infty$, $E_{tan} = 0$ on all walls but *t*.

$$\frac{1}{2} \oint_{t} \overline{E} \times \overline{H} \cdot \overline{a}_{z} \, dS = P_{loss} + 2j\omega(W_{m} - W_{e})$$

At the terminal plane *t* the transverse fields are

$$\overline{E}_t = K_1^{-1}(V^+ + V^-)\overline{e} = K_1^{-1}V\overline{e}$$
$$\overline{H}_t = K_2^{-1}(I^+ - I^-)\overline{h} = K_2^{-1}I\overline{h}$$

Thus
$$\frac{1}{2}(K_1K_2^*)^{-1}VI^*\int_t \overline{e} \times \overline{h}^* \cdot \overline{a}_z dS = \frac{1}{2}VI^* = P_{loss} + 2j\omega(W_m - W_e)$$

We have now
$$V = Z_{in}I$$

$$Z_{in} = \frac{P_{loss} + 2j\omega(W_m - W_e)}{\frac{1}{2}II^*} = R + jX$$

 $Z_{in} = f(P_{loss}, W_m - W_e)$

If $W_m > W_e \longrightarrow X > 0$, inductive one-port If $W_m < W_e \longrightarrow X < 0$, capacitive one-port

Foster's reactance theorem

$$\frac{\partial X}{\partial \omega} = \frac{4(W_m + W_e)}{H^*} > 0$$

The slope of the reactance function must always be positive for a lossless circuit (reactive termination)

N-port circuits

N-port microwave circuit: if each guide only supports one mode

Impedance matrix

- let the terminal planes be choses sufficiently far from the junction=> only dominant incident and reflected waves.
 =>equivalent voltages and currents
- Use total current as independent variables and total voltages as dependent variables, hence linear combination can be written as:

Properties

- Non reciprocal circuit: $Z_{ij} \neq Z_{ji}$ unsymmetrical impedance matrix ($2N^2$ parameters)
- Reciprocal circuit: Z_{ij}=Z_{ji} => symmetrical impedance matrix (N(N+I) parameters)
- Lossless circuit: symmetrical and imaginary [Z] (N(N+1)/2 parameters)
- Same applies to [Y]=[Z]⁻¹

$$\begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ \vdots \\ V_N \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} & \vdots & z_{1N} \\ z_{21} & z_{22} & \vdots & z_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ z_{N1} & z_{N2} & \vdots & z_{NN} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ \vdots \\ I_N \end{bmatrix}$$

• On white board: Derivation of matrix properties for N-port circuits

Two-port junctions

Common! especially transistor amplifiers involves 2-port theory

On white board: Example with Z-matrix (T and Pi networks)

Figure 4.13 © John Wiley & Sons, Inc. All rights reserved.

ex) lossless & reciprocal 2-port

Figure 4.12 © John Wiley & Sons, Inc. All rights reserved.

CHALMERS

27

Solor (L.C.)

Scattering matrix [S]

[S] can be measured using a Vector Network Analyser (VNA), even at very high frequencies.

S-parameter test set-up

CHALMERS

Vector Network Analyzer

© John Wiley & Sons, Inc. All rights reserved.

CHALMERS

Properties of the S-matrix

Reciprocal if
 ([S] symmetric)

 $\left[S\right] = \left[S\right]^{t}$

• Lossless if: ([S] is unitary, [U] is the unit diagonal $[S]^t[S]^* = [U]$ matrix)

• On white board: Scattering matrix for a lossless circuit

MCC121 / J. Stake

Scattering matrix [S]

Shift of the reference plane

• Two port case:

$$\begin{bmatrix} S' \end{bmatrix} = \begin{bmatrix} \Phi \end{bmatrix} \cdot \begin{bmatrix} S \end{bmatrix} \cdot \begin{bmatrix} \Phi \end{bmatrix}, \begin{bmatrix} \Phi \end{bmatrix} = \begin{bmatrix} e^{-j \cdot \beta \cdot l_1} & 0 \\ 0 & e^{-j \cdot \beta \cdot l_2} \end{bmatrix}$$

or
$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} \Phi \end{bmatrix}^{-1} \cdot \begin{bmatrix} S' \end{bmatrix} \cdot \begin{bmatrix} \Phi \end{bmatrix}^{-1}$$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} e^{j \cdot \beta \cdot l_1} & 0 \\ 0 & e^{j \cdot \beta \cdot l_2} \end{bmatrix} \cdot \begin{bmatrix} S' \end{bmatrix} \cdot \begin{bmatrix} e^{j \cdot \beta \cdot l_1} & 0 \\ 0 & e^{j \cdot \beta \cdot l_2} \end{bmatrix}$$

On white board: Example, define [S] for a shunt admittance

Cascaded components

(a)

(b)

Figure 4.11 © John Wiley & Sons, Inc. All rights reserved.

How to define []? so new [] is a matrix multiplication.

• For cascaded components a convenient way to describe the connection is to use transmission matrices (sometimes called ABCD matrices)

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \frac{z_{11}}{z_{12}} & \frac{(z_{11}z_{22} - z_{12}^2)}{z_{12}} \\ \frac{1}{z_{12}} & \frac{z_{22}}{z_{12}} \\ \frac{1}{z_{12}} & z_{12} \end{pmatrix}$$

For reciprocal junctions *AD-BC*=1

INIVERSITY OF TECHNOL

TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Table 4.1© John Wiley & Sons, Inc. All rights reserved.39

Conversion table

	S	Z	У	h	ABCD
		$S_{11} = \frac{(z'_{11} - 1)(z'_{22} + 1) - z'_{12}z'_{21}}{4}$	$S_{11} = \frac{(1 - y'_{11})(1 + y'_{22}) + y'_{12}y'_{21}}{4}$	$S_{11} = \frac{(h_{11} - 1)(h_{22} + 1) - h_{12}h_{21}}{4}$	$\frac{A'+B'-C'-D'}{4} = \frac{2(A'D'-B'C')}{4}$
	S ₁₁ S ₁₂	$S_{12} = \frac{2z'_{12}}{4}$	$S_{12} = \frac{-2y'_{12}}{4z}$	$S_{12} = \frac{2h'_{12}}{A_2}$	
		$S_{21} = \frac{2z'_{21}}{z'_{21}}$	$S_{21} = \frac{-2y'_{21}}{2}$	$S_{21} = \frac{-2h_{21}}{2}$	
	321 322	$S_{11} = (z'_{11} + 1)(z'_{22} - 1) - z'_{12}z'_{21}$	Δ_2 $S_{12} = \frac{(1 + y'_{11})(1 - y'_{22}) + y'_{12}y'_{21}}{(1 + y'_{11})(1 - y'_{22}) + y'_{12}y'_{21}}$	$\Delta_3 = (1 + h'_{11})(1 - h'_{22}) + h'_{12}h'_{21}$	2 -A' + B' - G' + D'
	(4.0.)(4.0.).0.0	Δ ₁	φ ₂₂ = Δ ₂	Δ ₃	Δ ₄ Δ ₄
	$z'_{11} = \frac{(1+S_{11})(1-S_{22})+S_{12}S_{21}}{\Delta_5}$	Z ₁₁ Z ₁₂	<u>V22</u> <u>-V12</u>	hi hiz	A 48
	$Z'_{12} = \frac{\Delta_{12}}{\Delta_{5}}$	말 이 한 것 같은 것	<i>o</i> , <i>o</i> ,	1922 1922	
	$z_{21}^{c} = \frac{-c_{c1}}{\Delta_{5}}$ $(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}$	Z ₂₁ Z ₂₂	$\frac{-y_{21}}{ y } \frac{y_{11}}{ y }$	$\frac{-h_{21}}{h_{22}}$ $\frac{1}{h_{22}}$	$\frac{1}{C}$ $\frac{D}{C}$
	$Z_{22} = \frac{\Delta_5}{\Delta_5}$				20
	$y'_{11} = \frac{(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{\Delta_6}$	Z22 -Z12	Via Via	<u>1</u> -h ₁₂	<u>D</u> <u>-48</u>
	$y'_{12} = \frac{-2S_{12}}{\Delta_6}$	izi izi		h ₁₁ h ₁₁	вВ
	$y'_{21} = \frac{-2.5_{21}}{\Delta_6}$ (1 + S_{12})(1 = S_{12}) + S_{12} S_{22}	$\frac{-z_{21}}{ z }$ $\frac{z_{11}}{ z }$	y21 y22	<u>h₂₁</u> <u> h </u> h ₁₁ h ₁₁	$\frac{-1}{B}$ $\frac{A}{B}$
	$y'_{22} = \frac{(1+0)(1+0)(2)}{\Delta_6}$				
	$H_{11} = \frac{(1+S_{11})(1+S_{22}) - S_{12}S_{21}}{4}$				
	$h'_{12} = \frac{2S_{12}}{4}$	$\frac{121}{Z_{22}}$ $\frac{Z_{12}}{Z_{22}}$	$\frac{1}{y_{11}}$ $\frac{-y_{12}}{y_{11}}$	h ₁₁ h ₁₂	$\frac{B}{D} = \frac{-\Delta B}{D}$
	$h_{D_{21}} = \frac{-2S_{21}}{1}$	-z ₂₁ <u>1</u>	y ₂₁ <u>ly1</u>	has has	<u>-1</u> <u>c</u>
	$\frac{\Delta_7}{M_{22}} = \frac{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}}{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}}$	Z22 Z22	<i>y</i> 11 <i>y</i> 11		D D
	Δ_7 (1 + S ₁₁)(1 - S ₂₂) + S ₁₂ S ₂₁				
ABC	$A' = \frac{2S_{21}}{(1+S_{11})(1+S_{22}) - S_{12}S_{21}}$	$\frac{z_{11}}{z_{21}}$ $\frac{ z }{z_{21}}$	$\frac{-y_{22}}{y_{21}}$ $\frac{-1}{y_{21}}$	$\frac{-ln_1}{h_{21}}$ $\frac{-n_{11}}{h_{21}}$	A B
1.001	$B' = \frac{2S_{21}}{(1 - S_{12})(1 - S_{22}) - S_{22}S_{21}}$	1 Z22	-lyi -y ₁₁	-h22 -1	с р
	$C' = \frac{(1 - S_{11})(1 - S_{22}) - S_{12} - S_{21}}{2S_{21}}$ $(1 - S_{12})(1 + S_{22}) + S_{12} - S_{21}$	Z ₂₁ Z ₂₁	<u>Y21</u> <u>Y21</u>	h ₂₁ h ₂₁	
	$D' = \frac{1}{2S_{21}}$				
	$ \Delta_1 = (z'_{11} + 1)(z'_{22} + 1) - z'_{12}z'_{21} \Delta_2 = (1 + y'_{11})(1 + y'_{22}) - y'_{12}y'_{21} $	$z'_{11} = z_{11}/Z_0, z'_{12} = z_1, y'_{11} = y_{11}Z_0, y'_{12} = y_{12}$	$z_{0}^{2} z_{21}^{2} = z_{21}^{2} z_{0}^{2} z_{22}^{2} = z_{22}^{2} z_{0}^{2} z_{0}^$	S	ee Gonzalez, page 62.
	$\Delta_3 = (n_{11} + 1)(n_{22} + 1) - n_{12}n_{21}$ $\Delta_4 = A' + B' + C' + D'$ $\Delta_5 = (1 - S_{12})(1 - S_{22}) - S_{12}S_{21}$	$n_{11} = n_{11}/2_0, n_{12} = n_1$ $A' = A, B' = B/Z_0, C' = 1$ $ z = z_{11}z_{10} = z_{10}z_{11}$	$_{2}, n_{21} = n_{21}, n_{22} = n_{22}Z_0$ = $GZ_0, D' = D$		
	$\Delta_6 = (1 + S_{11})(1 + S_{22}) - S_{12}S_{21}$ $\Delta_7 = (1 - S_{11})(1 + S_{22}) + S_{12}S_{21}$ $\Delta_7 = (1 - S_{11})(1 + S_{22}) + S_{12}S_{21}$	$ y = y_{11}y_{22} - y_{12}y_{21}$ $ h = h_{11}h_{22} - h_{12}h_{21}$	40	승규는 것이 있었다.	

MCC121 / J. Stake

MCC121_2014_lecture_5.key - 18 november 2014

Summary of lecture 5

- Read chapter 4.
 - Impedance (equivalent voltage / current)
 - N-ports, matrix representations
 - Properties for lossless and reciprocal circuits
- Next: Impedance transformation and matching (ch5)

- R. Bauer and P. Penfield, "De-Embedding and Unterminating," IEEE Transactions on Microwave Theory and Techniques, vol. 22, no. 3, pp. 282–288, 1974.
- D.A. Frickey, "Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 2, pp. 205–211, 1994.

IVERSITY OF TECHNOLO