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Microwave Engineering 
MCC121, 7.5hec, 2014

Lecture 5

Challenging
Stimulating
Rewarding

”a study of microwave circuits provides a deeper physical insight into 
conventional circuit theory”  R E Collin
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Notice

Don’t forget to register for the labs!
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Outline
Summary of transmission lines (Ch3)

Circuit theory for waveguiding systems 
(Ch4)

Impedance matrix

Reciprocal, lossless networks

Scattering matrix

ABCD matrix
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Objectives
On completion of this course unit you should be able to:  

Analyse wave propagating properties of guided wave structures (TE, TM, 
TEM waves, microstrip, stripline, rectangular and circular waveguides, 
coupled lines)

 Apply N-port representations for analysing microwave circuits

 Apply the Smith chart to evaluate microwave networks

 Design and evaluate impedance matching networks

 Design, evaluate and characterise directional couplers and power 
dividers

 Design and analyse attenuators, phase shifters and resonators

 Explain basic properties of ferrite devices (circulators, isolators)
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Hollow waveguides
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Dominant TE10 mode
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The concept of impedance

as well as medium. The impedance may also be dependent on the 
direction of the propagating wave.The concept of impedance is an 

Intrinsic impedance of the medium,

Wave impedance; this impedance is a characteristic of the particular type of wave. 
TEM, TE, TM waves each have different wave impedances; they may depend on the 
type of the line or guide, the material, and frequency,

Characteristic impedance is the ratio of voltage to current for a travelling wave; 
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Circuit theory

At low frequencies: Kirchoff ’s laws apply

At high frequencies: propagation effects 
important

Still! it is possible to utilise equivalent 
voltages and currents. But with the main 
difference that such voltage/current waves 

”a study of microwave circuits provides a deeper physical insight into 
conventional circuit theory”  R E Collin
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Circuit theory cont.

Hard and often impossible to 
measure v(t) and i(t) at high 
frequencies

TEM Wave

A unique impedance can be 

applicable!

V = E
+

−

∫ dl , I = H dl
C
∫
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On white board: Show that voltage, V, is not 
unique but depends on x, y. For a TE10 mode 
in a rectangular waveguide.

Waveguides: TE and TM modes
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Equivalent voltage and current 
waves

Power transmitted is given by an integral involving 

In a loss free guide supporting several modes, the 
power transmitted is the sum of that contributed 
by each mode individually

guide according to e± jβz

Zωh = az × e
11
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Fictitious transmission lines

A waveguide supporting N propagating modes, can 

supporting equivalent voltages and current waves

Hence, when several modes are supported, the 
number of electrical ports will exceed the number 
of physical ports

V = Vn
+e− jβnz +Vn

−e jβnz( )
n=1

N

∑

I = In
+e− jβnz − In

−e jβnz( )
n=1

N

∑ = YnVn
+e− jβnz −YnVn

−e jβnz( )
n=1

N

∑
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Equivalent voltage, current and 
impedance

Only for a particular mode, so

Eq. V and I

The ratio should be equal to the 
characteristic impedance of the line (this 
selection is arbitrary, often equal to wave 
impedance)

Zωh = az × e
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such as ZPI, ZVI, and ZVP.

Comment: Impedance concept
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Characteristic impedance ch4.1

1. pi=2P/I*I

2. pv=V*V/2P

3. vi pv x 
pi)

E. Wollack, “TCHEB x: Homogeneous Stepped Waveguide Transformers,” NRAO, 

S. A. Schelkunoff, “Impedance concept in waveguides,” Q. Appl. Math, vol. 2, no. 1, 
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Rectangular and circular waveguide impedances 
normalised to the wave impedance
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One-port circuit

energy can enter or leave through a single 
propagation line

in
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Impedance description
1
2

E ×H iaz dS = Ploss + 2 jω(Wm
t
∫ −We )

At the terminal plane t the transverse fields are 
Et = K1

−1(V + +V − )e = K1
−1Ve

Ht = K2
−1(I + − I − )h = K2

−1Ih

Thus 
1
2
(K1K2

∗)−1VI ∗ e ×h ∗
t
∫ iazdS =

1
2
VI ∗ = Ploss + 2 jω(Wm −We )

We have now V =ZinI 
2 ( )
1
2

loss m e
in

P j W W
Z R jX

II
ω

∗

+ −
= = +

( , )in loss m eZ f P W W= −

If Wm>We                  X > 0, inductive one-port 

If Wm<We                  X < 0, capacitive one-port  

Assume now perfectly conductive walls, 
σ=∞, Etan=0 on all walls but t.#
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Foster’s reactance theorem

The slope of the reactance function must 
always  be positive for a lossless circuit 
(reactive termination)

∂X
∂ω

=
4(Wm +We )

II ∗
> 0

MCC121_2014_lecture_5.key - 18 november 2014



MCC121 / J. Stake

N-port circuits

N-port microwave circuit: if each guide only supports one mode 
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# $ # $ # $
# $ # $ # $=
# $ # $ # $
# $ # $ # $
# $ # $ # $% & % & % &

=>equivalent  voltages and currents

Use total current as independent variables and total voltages 
as dependent variables, hence linear combination can be 
written as:

Impedance matrix
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1 11 12 1 1

2 21 22 2 2

1 2

. .

. .
. . . . . . .
. . . . . . .

. .

N

N
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V z z z I
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! " ! " ! "
# $ # $ # $
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# $ # $ # $
# $ # $ # $% & % & % &

ij≠ ji unsymmetrical 
impedance matrix ( 2N2 parameters)

ij ji => symmetrical 
impedance matrix ( N(N+1) parameters)

Lossless circuit: symmetrical and imaginary 

-1

Properties
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On white board: Derivation of matrix 
properties for N-port circuits
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Two-port junctions

1 11 12 1

2 21 22 2

V z z I
V z z I
! " ! " ! "

=# $ # $ # $
% & % & % &

Common! especially transistor 
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On white board: Example with Z-matrix (T and 
Pi networks)
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ex) lossless & reciprocal 2-port
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Analyser (VNA),  even at very high frequencies.
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S-parameter test set-up
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Vector Network Analyzer
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Properties of the S-matrix

Reciprocal if 

Lossless if: 

the unit diagonal 
matrix) 

S[ ] = S[ ]t

S[ ]t S[ ]∗ = U[ ]
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On white board: Scattering matrix for a lossless 
circuit
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Shift of the reference plane

Two port case: 

 

" S [ ] = Φ[ ] ⋅ S[ ] ⋅ Φ[ ],  Φ[ ] =
e− j ⋅β ⋅ l1 0

0 e− j ⋅β ⋅ l2

' 

( 
) 

* 

+ 
,  

or S[ ] = Φ[ ]−1
⋅ " S [ ] ⋅ Φ[ ]−1

S[ ] =
e j ⋅β ⋅ l1 0

0 e j ⋅β ⋅ l2

' 

( 
) 

* 

+ 
, ⋅ " S [ ] ⋅

e j ⋅β ⋅ l1 0
0 e j ⋅β ⋅ l2

' 

( 
) 

* 

+ 
, 

G!

S!

D!

⇔[S]!

Reference planes!

θ1 = β ⋅ l1 θ2 = β ⋅ l2

Lossless transmission lines!

a´1! a1!

b´1! b!
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shunt admittance

Y!
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Cascaded components
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For cascaded components a convenient way to 
describe the connection is to use transmission 
matrices (sometimes called ABCD matrices)

Cascaded components

1 2 2

1 2 2

V AV BI
I CV DI
= +

= +
1 2

1 2

V VA B
I IC D
! " ! "! "

=# $ # $# $
% &% & % &

1 1 2 2

1 1 2 2

A B A BA B
C D C DC D
! "! "! "

= # $# $# $
% & % &% &

( )211 22 1211

12 12

22

12 12

1

z z zz
A B z z
C D z

z z

! "−
$ %

! " $ %=$ % $ %& '
$ %
& '

For reciprocal junctions AD-BC=1 
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Conversion table

See Gonzalez, page 62. 
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Summary of lecture 5
Read chapter 4.

Impedance (equivalent voltage / current)

N-ports, matrix representations

Properties for lossless and reciprocal 
circuits

Next: Impedance transformation and 
matching (ch5)
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Further reading

Unterminating,” IEEE Transactions on 
Microwave Theory and Techniques, vol. 22, 

ABCD, and T parameters which are valid for 
complex source and load impedances,” IEEE 
Transactions on Microwave Theory and 
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