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Outline

• Transmission lines and waveguides (Ch3)

• Summary of hollow waveguides

• Microstrip lines

• Striplines

• Coupled lines
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Objectives
On completion of this course unit you should be able to:  

Analyse wave propagating properties of guided wave structures (TE, TM, 
TEM waves, microstrip, stripline, rectangular and circular waveguides, 
coupled lines)

 Apply N-port representations for analysing microwave circuits

 Apply the Smith chart to evaluate microwave networks

 Design and evaluate impedance matching networks

 Design, evaluate and characterise directional couplers and power 
dividers

 Design and analyse attenuators, phase shifters and resonators

 Explain basic properties of ferrite devices (circulators, isolators)
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• Assume no sources:

• Cross section or electrical properties do 
not vary along z-axis (axial uniformity)

• Separable: assume solution f(z)g(x,y)

Helmholtz equation
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Classification of waves

• TEM-Transverse Electromagnetic: no 
longitudinal field components

• TE-Transverse Electric, or H modes: 
longitudinal magnetic field component

• TM-Transverse Magnetic, or E modes: 
longitudinal electric field component
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Summary of modes
• TEM waves

Ez =Hz=0

Field is a solution to a transverse gradient of a scalar function Φ(x,y), 
which is a solution of a two-dimensional Laplace equation

• TE waves, H modes 

ez =0

All field components are derived from hz

• TM waves, E modes

hz =0

All field components are derived from ez

• TE and TM
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WG modes

• Principal mode = fundamental mode = 
dominant mode: lowest cut-off frequency

• Higher order modes, if unwanted also 
called parasitic modes!

ex) modes of a circular WG
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Lossless transmission lines

• Two or more parallel conductors

• Surrounded by a uniform dielectric

➡TEM as principal wave

• Microstrip and other planar lines do not 
have the dielectric medium completely 
surrounded

➡quasi-TEM waves (low frequency limit)
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• Attenuation due to 
dielectric loss

• Attenuation due to 
conductor loss, 

• Total attenuation:

Attenuation

αc

αd

α =αc +αd
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Hollow waveguides
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The concept of impedance
The term impedance was first used by Oliver Heaviside in the19th 

century to describe the complex ratio V/I in AC circuits. In the 1930’s 
Schelkunoff extended this concept to electromagnetic fields and noted 
that impedance should be regarded as characteristic of the type of field, 

as well as medium. The impedance may also be dependent on the 
direction of the propagating wave.The concept of impedance is an 
important link between field theory and transmission line theory.

• Intrinsic impedance of the medium,

• Wave impedance; this impedance is a characteristic of the particular type of wave. 
TEM, TE, TM waves each have different wave impedances; they may depend on the 
type of the line or guide, the material, and frequency,

• Characteristic impedance is the ratio of voltage to current for a travelling wave; 
voltage and current are uniquely defined only for a TEM wave; TE and TM waves 
do not have uniquely defined voltage and current, so the characteristic impedance 
for such waves may be defined in various ways.
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Dominant TE10 mode
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Perturbation method to 
calculate loss

• Assumes that field distribution in lossy line is not 
different from lossless line.

• Derive method to calculate loss...

P(z) = Poe
−2αz

pl =
−∂P
∂z

= 2αP(z) "power loss per unit length"

α =
pl (z)

2P(z)
=
pl (z = 0)

2Po
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Attenuation

Total losses are assumed to be a sum of 
metallic and dielectric losses; this is a good 

approximation for small losses

10 , a=2.286cm, b=1.143cm, CuTE
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Ridge waveguide

• Better single mode 
bandwidth
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Finline
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Wave velocities
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Phase velocity 
The phase velocity is the velocity an observer must move 
with in order to see a constant phase for the wave 
propagating along the guide.

No information can be transmitted with the phase velocity 

Group velocity 
The group velocity is the velocity with which a signal 
consisting of a very narrow band of frequency components 
propagates. vg =

dβ
dω
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Wave velocities - signal 
distortion

vg =
dβ
dω
!
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λg
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vgvp = c
2

for a waveguide
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Connection of WGs
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Field analysis of 
transmission 

lines
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Microstrip
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effective dielectric constant
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• Exact fields constitute a hybrid TM-TE wave

• For electrically thin substrates (d<<)=> 
quasi TEM fields. Essentially the same fields 
as static ones.

• Effective dielectric constant is dependent on 
substrate thickness and conductor width

Microstrip lines

vp =
c
εe

β = ko εe
1< εe < εr
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effective dielectric constant
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MS: Characteristic impedance
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MS: attenuation
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Strip line

• Supports TEM mode, but can also carry 
higher-order TE/TM modes
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Strip-line: characteristic 
impedance
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Current distribution in MS lines
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Coupled MS lines

Even mode : Strips 
being at the same 

potential, V.

Odd mode : Strips 
being at the opposite 
potential, +V and -V.

Current 
distribution
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Coupled MS lines - dispersion
Used in directional couplers
Important parameters:
-Even- and odd-mode effective 
dielectric constants
-Even- and odd-mode 
characteristic impedances

C = Zc
e − Zc

o

Zc
e + Zc

o
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Coupled strip lines
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Coplanar lines
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Coplanar lines
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Slotline
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Dielectric waveguide
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Wave velocities - signal 
distortion

vg =
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dω
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Bandwidth limitations?

Onset of higher order 
modes...
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Summary
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Summary of lecture 4
• Read chapter 3.

• TEM, TE, and TM modes

• Coupled lines

• Hollow waveguides (TE and TM modes)

• Field analysis on transmission lines

• Effective dielectric constant 

• Dispersion, characteristic impedance

• Next: Circuit theory (ch4)
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Further reading
• R. A. Pucel, “Design Considerations for 

Monolithic Microwave Circuits,” IEEE Trans. 
Microw. Theory. Tech., vol. 29, no. 6, pp. 513–
534, 1981.

• S. B. Cohn, “Shielded Coupled-Strip 
Transmission Line,” Microwave Theory and 
Techniques, IRE Transactions on, vol. 3, no. 5, 
pp. 29–38, 1955.
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