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Microwave Engineering 
MCC121, 7.5hec, 2014

Lecture 3

”a study of microwave circuits provides a deeper physical insight into 
conventional circuit theory”  R E Collin
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Outline
• Transmission lines and waveguides (Ch3.1-3.5)

• Summary of  waves on transmission lines (Ch2)

• Classification of waves (TE, TM, TEM)

• Field analysis

• Parallel plate

• Hollow waveguides

• Coaxial line
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Objectives
On completion of this course unit you should be able to:  

1) Analyse wave propagating properties of guided wave structures (TE, TM, 
TEM waves, microstrip, stripline, rectangular and circular waveguides, 
coupled lines)

2)  Apply N-port representations for analysing microwave circuits

3)  Apply the Smith chart to evaluate microwave networks

4)  Design and evaluate impedance matching networks

5)  Design, evaluate and characterise directional couplers and power 
dividers

6)  Design and analyse attenuators, phase shifters and resonators

7)  Explain basic properties of ferrite devices (circulators, isolators)
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Distributed components 
Transmission lines
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Telegrapher’s equations

∂2V
∂z2

−γ 2V = 0

∂2I
∂z2

−γ 2I = 0

γ =α + jβ = R+ jωL( ) G + jωC( )

∂v(z, t)
∂z

= −Ri(z, t)− L ∂i(z, t)
∂t

∂i(z, t)
∂z

= −Gv(z, t)−C ∂v(z, t)
∂t

TD FD

Wave equations
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Propagation constant

∂2V
∂z2

−γ 2V = 0

∂2I
∂z2

−γ 2I = 0

γ =α + jβ = R+ jωL( ) G + jωC( )

V (z) =V +e−γz +V −eγz

I(z) = I +e−γz + I −eγz

Phase velocity: vp =ω β
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Maxwell’s equations

Gauss’s law

Faraday’s law

Ampere’s law with Maxwell’s correction
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Guided waves        
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• Assume no sources:

• Cross section or electrical properties do 
not vary along z-axis (axial uniformity)

• Separable: assume solution f(z)g(x,y)

Helmholtz equation

0

0
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0

2

2
0

2

=+∇
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HkH

EkE
k =ω εµ
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Classification of waves

• TEM-Transverse Electromagnetic: no 
longitudinal field components

• TE-Transverse Electric, or H modes: 
longitudinal magnetic field component

• TM-Transverse Magnetic, or E modes: 
longitudinal electric field component
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• On white board: Maxwell equations for TE,  TM 
and TEM waves.
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Summary of modes
• TEM waves

Ez =Hz=0

Field is a solution to a transverse gradient of a scalar function Φ(x,y), 
which is a solution of a two-dimensional Laplace equation

• TE waves, H modes 

ez =0

All field components are derived from hz

• TM waves, E modes

hz =0

All field components are derived from ez

• TE and TM
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Lossless transmission lines

• Two or more parallel conductors

• Surrounded by a uniform dielectric

➡TEM as principal wave

• Microstrip and other planar lines do not 
have the dielectric medium completely 
surrounded

➡quasi-TEM waves (low frequency limit)
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TRANSMISSION LINE 
PARAMETERS

• L= magnetic flux / total current

• C = total charge per unit length/voltage 
difference between conductors

• G = total shunt current / voltage difference 
between conductors

TEM=> electrostatic solution  
equivalent circuit parameters
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Hollow waveguides
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• In Pozar’s book! Read and derive solutions for 
waves in a rectangular WG.
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Rectangular WG: TEnm modes

Hz = Anm cos
nπ x
a
cosmπ y

b
e jβnmz

Hx = ± j
βnm
kc,nm
2 Anm

nπ
a
sin nπ x

a
cosmπ y

b
e jβnmz

H y = ± j
βnm
kc,nm
2 Anm

mπ
b
cos nπ x

a
sinmπ y

b
e jβnmz

Ex = Zh ,nmAnm j
βnm
kc,nm
2

mπ
b
cos nπ x

a
sinmπ y

b
e jβnmz

Ey = −Zh,nmAnm j
βnm
kc,nm
2

nπ
a
sin nπ x

a
cosmπ y

b
e jβnmz

Zh,nm =
k0
βnm
Z0
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Different modes in rectangular 
WG
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Surface current in rectangular 
WG

TE10
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Waves in WGs
• Standard rectangular WG: a=2b

• Single mode bandwidth: one octave bandwidth (c/
2a < f < c/a), usually a bit less due to dispersion

• Propagating modes

• exhibit different propagation constants

• Evanescent modes

• Important for discontinuities (reactive 
energy)
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Standard WGs

from http://www.vadiodes.com/VDI/pdf/waveguidechart200908.pdf
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The concept of impedance
The term impedance was first used by Oliver Heaviside in the19th 

century to describe the complex ratio V/I in AC circuits. In the 1930’s 
Schelkunoff extended this concept to electromagnetic fields and noted 
that impedance should be regarded as characteristic of the type of field, 

as well as medium.  The impedance may also be dependent on the 
direction of the propagating wave.The concept of impedance is an 
important link between field theory and transmission line theory.

• Intrinsic impedance of the medium,

• Wave impedance; this impedance is a characteristic of the particular type of wave. 
TEM, TE, TM waves each have different wave impedances; they may depend on the 
type of the line or guide, the material, and frequency,

• Characteristic impedance is the ratio of voltage to current for a travelling wave; 
voltage and current are uniquely defined only for a TEM wave; TE and TM waves 
do not have uniquely defined voltage and current, so the characteristic impedance 
for such waves may be defined in various ways.

0
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η
ε

= =Z

=wZ E H

0 =
LZ
C
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Dominant TE10 mode
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• Attenuation due to 
dielectric loss

• Attenuation due to 
conductor loss, 

• Total attenuation:

Attenuation

αc

αd

α =αc +αd
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• Propagation constant

• for TE and TM (Np/m).

• TEM waves (Np/m)=>

Attenuation due to dielectric 
loss:  homogenous filling

γ =αd + jβ = kc
2 − k2 = kc

2 −ω 2µoεoεr 1− j tanδ( ) = kc
2 − k2 + jk2 tanδ ≈

≅ kc
2 − k2 + jk2 tanδ

2 kc
2 − k2

= jβ + k
2 tanδ
2β

αd =
k2 tanδ
2β

αd =
k tanδ
2
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Perturbation method to 
calculate loss

• Assumes that field distribution in lossy line is not 
different from lossless line.

• Derive method to calculate loss...

P(z) = Poe
−2αz

pl =
−∂P
∂z

= 2αP(z) "power loss per unit length"

α =
pl (z)

2P(z)
=
pl (z = 0)

2Po
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Circular waveguide
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Serious attempts 
to utilise TE01 

for long distance 
communication
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Elliptical waveguide
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Coaxial waveguides
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Ridge waveguide

• Better single mode 
bandwidth
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• On white board: in-homogenous filled parallel 
plate waveguide.

32 MCC121_2014_lecture_3.key - 13 november 2014



MCC121 / J. Stake
Lecture 2

Parallel plate waveguide
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Summary of lecture 3
• Read chapter 3 (3.1-3.5).

• TEM, TE, and TM modes

• Hollow waveguides (TE and TM modes)

• Field analysis on transmission lines

• Dispersion, characteristic impedance

• Next: Planar transmission lines such as 
microstrip, stripline and coplanar lines
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