Introduction to Microwave Ferrite components

Vincent Desmaris
©GARD, Earth and Space Sciences

Outline

- Microwave Propagation in a Ferrite Medium
- Faraday Rotation
- Gyrator
- Isolators
- Circulators

Simplest model - Larmor Precession

One single spinning electron in a static "magnetic field" B_{0}

More complete model

Superposition of circularly polarised ac B_{1} in plane perpendicular to B_{0}

- Free precession (static B_{0}) \rightarrow Forced precession (static $B_{0}+$ ac B_{1})
- Resultant torque $T \rightarrow$ equation of motion
- Left Circular Polarisation \rightarrow "negative" direction of rotation
- Dipole moment m forced to precess about z with angular frequency ωt
- Precession angle ϕ must be less than θ to ensure that torque will precess in CCW direction

©GARD, Earth and Space Sciences

More complete model

Superposition of circularly polarised ac B_{1} in plane perpendicular to B_{0}

- Free precession (static B_{0}) \rightarrow Forced precession (static $B_{0}+$ ac B_{1})
- Resultant torque $T \rightarrow$ equation of motion
- Right Circular Polarisation \rightarrow "positive" direction of rotation
- Dipole moment m forced to precess about z with angular frequency ωt
- Precession angle ϕ must be greater than θ to ensure that torque will precess in CW direction

Generalization to the whole ferrite

Ferrite $=\mathrm{N}$ effective electrons spinning per unit volume
\rightarrow Macroscopic viewpoint: consider density of dipoles as "smeared out"
\rightarrow Total magnetic dipole M :

$$
M=N \cdot m
$$

If $\mathrm{B}_{0} \gg 1$, and $\mathrm{B}_{0} \gg \mathrm{~B}_{1}$

$$
\begin{aligned}
& \mu^{+}=\mu_{0}\left(1+N \cdot m^{+}\right)=\mu_{0}\left(1+\frac{\gamma \mu_{0} M_{0}}{\omega_{0}-\omega}\right) \\
& \mu^{-}=\mu_{0}\left(1+N \cdot m^{-}\right)=\mu_{0}\left(1+\frac{\gamma \mu_{0} M_{0}}{\omega_{0}+\omega}\right)
\end{aligned}
$$

Fundamental result, depending on polarization, circularly polarized TEM waves experience different permeability (i.e. propagation constants) depending on type of polarization

Mathematical Modelling of Ferrites

- Magnetisation M : "magnetic polarisation"
- Vector field describing density of magnetic dipole moments
- Magnetic Susceptibility χ_{m} :
- Degree of M in response to applied field H

$$
M=\chi_{m} \cdot H
$$

- χ_{m} is a tensor, and so is μ :

$$
\begin{aligned}
& B=\mu_{0}(H+M) \\
& \Rightarrow B=\mu_{0}\left(1+\chi_{m}\right) H
\end{aligned}
$$

$$
\therefore\left[\begin{array}{l}
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right]=\mu_{0}\left[\begin{array}{ccc}
1+\chi_{x x} & \chi_{x y} & 0 \\
\chi_{y x} & 1+\chi_{y y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
H_{x} \\
H_{y} \\
H_{z}
\end{array}\right]
$$

- For small signals:
- $\chi_{x x}=\chi^{\prime}-j \chi^{\prime \prime}=\chi$
- $\chi_{x y}=\chi_{y x}=j\left(K^{\prime}-j K^{\prime \prime}\right)=j K$

Plane Wave in Ferrite Medium (1/3)

- Prior to ferrite loaded waveguide structures \rightarrow simple analysis of PW in infinite ferrite medium

1. Assume Plane Wave

$$
\longrightarrow \quad \begin{aligned}
& E=E_{0} e^{-j \beta z} \\
& H=H_{0} e^{-j \beta z}
\end{aligned}
$$

2. Source Free Medium

$$
\longrightarrow \quad \begin{aligned}
& \nabla \times E=-j \omega \mu H \\
& \nabla \times H=j \omega \varepsilon E
\end{aligned}
$$

- $\nabla \cdot E=\nabla \cdot H=0$
- $\frac{\partial}{\partial x}=\frac{\partial}{\partial Y}=0$

Plane wave in ferrite medium (2/3)

$$
\left[\begin{array}{cc}
\beta^{2}-\omega^{2} \varepsilon \mu_{0}(1+\chi) & -j \omega^{2} \varepsilon \mu_{0} K \\
j \omega^{2} \varepsilon \mu_{0} K & \beta^{2}-\omega^{2} \varepsilon \mu_{0}(1+\chi)
\end{array}\right]\left[\begin{array}{c}
H_{0 x} \\
H_{0 y}
\end{array}\right]=0
$$

Note that this is an eigenvalue problem, eigenvalues are obtained by setting the determinant of the matrix to zero

$$
\begin{aligned}
& \beta_{+}=\omega \sqrt{\varepsilon \mu_{0}} \sqrt{(1+\chi)+K} \\
& \beta_{-}=\omega \sqrt{\varepsilon \mu_{0}} \sqrt{(1+\chi)-K}
\end{aligned}
$$

- Obtain two solutions for propagation constant β \rightarrow natural modes

Plane wave in ferrite medium (3/3)

1. The two modes of propagations corresponds to circularly polarized waves

$\beta_{+} \Rightarrow$ positive circularly polarized wave $\beta_{-} \Rightarrow$ negative circularly polarized wave

2. Both waves propagates with a different phase constant
3. If the propagation is not along the static magnetic field, still 2 modes of propagations exists with different phase constants but not circularly polarized

- Linearly polarised wave along B_{0} - plane of polarisation will rotate since $\left|\beta_{+}\right| \neq\left|\beta_{-}\right|$
\rightarrow Faraday Rotation - non-reciprocal

Faraday Rotation (1/3)

- Consider a TEM wave linearly polarised in x at $z=0: \quad E=\hat{x} E_{0}$
- The wave propagates in an infinite, lossless medium with a static magnetic field B_{0} aligned in the z direction.
- Decompose the linearly polarised wave into two circularly polarised

$$
\begin{aligned}
& \text { waves: } \\
& E=\hat{x} E_{0}=\underbrace{\frac{E_{0}}{2}(\hat{x}+j \hat{y})}_{\text {LHCP }}+\underbrace{\frac{E_{0}}{2}(\hat{x}-j \hat{y})}_{\text {RHCP }}
\end{aligned}
$$

- LHCP propagates with $e^{-j \beta_{-} z}$
- RHCP propagates with $e^{-j \beta_{+} z}$

- i.e. different phase constants

Faraday Rotation (2/3)

- The resultant wave at distance z :
- The two components (LHCP and RHCP) have equal amplitudes, with the phase difference between them given by:

$$
\theta=\tan ^{-1} \frac{E_{y}}{E_{x}}=\tan ^{-1}\left(-\tan ^{-1}\left(\frac{\beta_{+}-\beta_{-}}{2} z\right)\right)=-\left(\frac{\beta_{+}-\beta_{-}}{2}\right) z
$$

- Resultant Wave: still linearly polarised but plane of polarisation is rotated by angle $\theta \rightarrow$ Faraday Rotation

Faraday Rotation (3/3)

- Faraday rotation is non-reciprocal - if the direction of propagation is reversed, the plane of polarisation continues to rotate in the same direction
- i.e. in a round-trip (i.e. forward and reversed), the total rotation is 2θ

Gyrators

- 2 port devices
- 180 degrees phase shift for transmission from port 1 to port 2 as compared to port 2 to port 1
- Take advantage of Faraday rotation
- Not very useful as single device, but handy as building block of isolators and circulators

$$
\left[S_{\text {ideal gyrator }}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Simple Gyrators

- Rectangular guide with twist

- Forward: $\Delta \phi=180^{\circ}$
- Reverse: $\Delta \phi=0^{\circ}$
- Straight rectangular guide

- Forward: $\Delta \phi=90^{\circ}$
- Reverse: $\Delta \phi=90^{\circ}$

Isolators

- 2 port devices
- Permit unattenuated transmission from Port 1 to Port 2 but high attenuation from Port 2 to Port 1
- Typical forward transmission loss $\sim 1 d B$
- Typical reverse attenuation $\sim 20-30 d B$ for $10 \% B W$
- Takes advantage of Faraday rotation
- Applications:
- Common for coupling microwave signal generator to load network
- All available power delivered to the load
- Reflections from load not transmitted back to the output terminals

Simple Isolator

- Design:
- Gyrator (or similar) with 45° twist and 45° Faraday Rotation
- Forward:
- Polarisation rotated by $+45^{\circ}$ (CCW)
- Polarisation rotated again by ferrite rod by $-45^{\circ}(\mathrm{CW})$
- Emerges at output with desired polarisation
- Reverse:
- Polarisation rotated by ferrite rod and twist by 90°
- At input the polarisation is parallel to resistive card \rightarrow absorption
- Two cards needed to account for multiple reflecions

Another simple Isolator?

Resonance Isolator

- Attenuation constants:

$$
\left(\alpha_{ \pm}\right)=\frac{\omega^{2} \epsilon \mu_{ \pm}^{\prime \prime}}{2 \beta_{ \pm}}
$$

- Varying frequency ω about ferrite resonance frequency ω_{0} :

- CP condition is inherent property of dominant $T E_{10}$ mode at two positions in rectangular waveguide

Circulators

- Multiport devices $(n>2)$
- Wave incident on port 1 couples only to port $n+1$

- Useful for coupling receiver and transmitter to the same antenna in radar system or separate input and output ports of negative resistance
 amplifiers

4 Port Circulators

- Two magic tees or hybrid junctions with gyrator
- Incident at Port 1
- Split between b and d in amp and phase
- Arrive in-phase at a and c
- \rightarrow Emerge from Port 2
- Incident at Port 2
- Split between a and c
- Gyrator $\rightarrow \phi_{b}=\Delta \phi_{a-b}+\pi$
- $\Delta \phi_{b-d}=\pi$
- Combine and emerge at Port 3
- Incident at Port 3
- Split between b and d with $\Delta \phi_{b-d}=\pi$
- Combine at a and c and exit Port 4
- Incident at Port 4
- Split between a and c with

$$
\Delta \phi_{a-c}=\pi
$$

- Gyrator $\rightarrow \phi_{b}=\Delta \phi_{a-b}+\pi$
- $\Delta \phi_{b-d}=0(2 \pi)$
- Combine and emerge at Port 1

4 Port Circulators

- Phase Shifter:
- Thin ferrite slab located in WG where magnetic field of $T E_{10}$ is circularly polarised
- Biasing field in y direction
- $\quad \therefore$ RCP for one direction, LCP for other
$-\beta_{+} \neq \beta_{-} \rightarrow \Delta \phi=\frac{\pi}{2}$
- $3 d B$ directional couplers
- Location of holes ($\frac{\lambda}{4}$ apart) splits power evenly between two outputs

(3)

3 Port Circulators

- Y-Junction Circulator

$$
\left[S_{3-\text { port }}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- Ferrite post - static B_{0} field provides nonreciprocal property

Junction Circulator

- Field Analysis
- Assume E field only in z direction $-E_{z}$
- E_{Z} is antisymmetric
- Applied DC magnetic field also only in z direction

Junction Circulator

- Susceptibility Tensor
- Degree of magnetisation M in response to applied magnetic field: $M=\chi H$

$$
\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\chi_{x x} & \chi_{x y} & 0 \\
\chi_{y x} & \chi_{y y} & 0 \\
0 & 0 & 1
\end{array}\right]}\left[\begin{array}{l}
H_{x} \\
H_{y} \\
H_{z}
\end{array}\right]
$$

Magnetic susceptibility tensor of ferrite

- Permeability Tensor
- Ability of material to support B field: $B=\mu_{0}(H+M)=\mu_{0}(1+\chi) H=\mu H$
- In cylindrical coordinates:

$$
\rightarrow\left[\begin{array}{l}
B_{\rho} \\
B_{\phi} \\
B_{z}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\mu & j \kappa & 0 \\
-j \kappa & \mu & 0 \\
0 & 0 & 1
\end{array}\right]}\left[\begin{array}{c}
H_{\rho} \\
H_{\phi} \\
H_{z}
\end{array}\right]
$$

Magnetic permeability tensor of ferrite

Junction Circulator

- Applying Maxwell's Equations for solution:

$$
\begin{gathered}
\frac{\partial^{2} E_{Z}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial E_{Z}}{\partial \rho}+\frac{1}{\partial \rho^{2}} \frac{\partial^{2} E_{Z}}{\partial \phi^{2}}+k^{2} E_{Z}=0 \\
\text { where } k=\omega \sqrt{\varepsilon \mu_{0} \frac{\left(\mu^{2}-\kappa^{2}\right)}{\mu}}
\end{gathered}
$$

- This is the same situation as for a TM mode solution in a cylindrical waveguide, but with different propagation constant k

Junction Circulator

- A more general solution for E_{z} is given (by analogy with TM mode solution):

- Corresponding solution for ϕ component of H field:

$$
\begin{aligned}
& H_{\phi}=-j \frac{\omega \varepsilon}{k} \sum_{n=0}^{\infty}\left(a_{n}\left[J_{n}^{\prime}(k \rho)-\frac{n K}{k \mu \rho} J_{n}(k \rho)\right] e^{-j n \phi} \ldots\right. \\
&\left.+b_{n}\left[J_{n}^{\prime}(k \rho)+\frac{n K}{k \mu \rho} J_{n}(k \rho)\right] e^{+j n \phi}\right)
\end{aligned}
$$

- Interpretation: waves circulating around ferrite disk in $\pm \phi$ directions
- The H_{ϕ} field is different for the two sets of waves \rightarrow non-reciprocal behaviour
- Essential property for a circulator

Junction Circulator

- Boundary Conditions

1. Continuous fields with TEM waves at ports
2. No E_{z} field for $\phi=\frac{4 \pi}{3}$ (isolated port)

- This ensures no coupling at port 3 - only coupling from $1 \rightarrow 2$

3. No H field outside coupling regions

$$
\begin{aligned}
& (r=a) \\
& H_{\phi}=\left\{\begin{array}{cc}
H_{1} & \frac{\psi}{2}<\phi<\frac{\psi}{2} \\
H_{2} & \frac{2 \pi}{3}-\frac{\psi}{2}<\phi<\frac{2 \pi}{3}+\frac{\psi}{2} \\
3 & \frac{4 \pi}{3}-\frac{\psi}{2}<\phi<\frac{4 \pi}{3}+\frac{\psi}{2}
\end{array}\right.
\end{aligned}
$$

- In practice - enough normally to take care of the first 3-6 propagation modes

References

1. Collin, foundations for microwave Engineering, 2000
2. Pozar, "Microwave Engineering", 2004
3. Lax, Button, "microwave ferrites and ferrimagnetics", 1962
