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You are welcome to ask 
questions during the presentation
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Lecturer background, affiliation

• Klas Yhland 
• M.Sc. Electrical engineering at Lund University of Technology, 1992
• Microwave design engineer, Ericsson Microwave Systems, 1992 - 1994
• Ph.D. in Microwave Electronics at Chalmers 1999
• Head of RF & Microwave Lab. at SP Technical Research Inst. of Sweden, Dec. 1999 to date
• Adjunct professor (adjungerad professor) at the Thz and Millimetre wave Laboratory, Chalmers 2012

• SP Technical Research Institute of Sweden
– In total ~1400 employees where ~100 in metrology

• The microwave lab
– Vector Network Analyzer and power metrology

• Research on calibration and uncertainty calculation methods
• Calibration services up to 40 GHz

– Education in microwave measurement techniques
– Analysis and design of customer equipment
– Members of the GHz Centre at Chalmers

• PhD. student supervision
• Research on 

– measurement problems from GHz – THz
– device modeling
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The measurement need
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Question: Can you measure the input impedance and gain of this 
circuit?

Answer: Yes, but we will measure S-parameters
Because we measure waves rather than voltages and currents
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Conversion to Z or Y-parameters
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Z / Y

For conversion equations see: J. Stenarson and K. Yhland, "Uncertainty Propagation Through Network Parameter 
Conversions," IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 4, pp. 1152-1157, April, 2009

S, Z and Y-parameters are complete models of a linear two port
But Z and Y parameters may become singular for some networks



S versus Z-parameters for an offset short circuit
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S-parameter Z-parameter



S versus Z-parameters for a 6 dB attenuator
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S-parameters Z-parameters



The disadvantage with v and i measurements
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At high frequencies, short wavelengths, we get problems with standing
waves
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The disadvantage of v and i measurements
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At high frequencies we get problems with standing waves
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The advantage of wave measurements
We measure the reflection coefficient Γ
Zc is the characteristic impedance of the connecting transmission line
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The advantage of wave measurements
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Wave ratios only change phase along a lossless transmission line

πje−Γ Γ

a

b

|Γ | is constant

Zc

4λ
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Characteristic impedance
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Usually the system impedance Zs = Zc = 50 Ω



Characteristic impedance – why 50 Ω?

1. Maximum power handling in coaxial at 30 Ω. Set by breakdown 
in connector air interface.

2. Minimum attenuation in coaxial: 77 Ω for air dielectric, 64 Ω for 
expanded PTFE and 52 Ω for solid PTFE .

 50 Ω good compromise for general purpose cables

 75 Ω common for antenna cables. But why? For dipole antenna 

matching (77 Ω)?
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On circuit boards it is easy to design transmission lines from 20 Ω to 
100 Ω. In circuit design we need both higher and lower impedances 
than our system impedance.

 50 Ω good compromise.  

Diagram: Maury Microwave Corporation, Appl. Note 5A-021



Mismatch in adapters and connectors
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Conclusion:
Measure very close to DUT
or use vector error correction



Common instruments in the microwave lab

• Signal generator

– Looks simple but demands on
• pure signal (low harmonics, low spurioses, low phase noise), 
• high output power, low output power
• advanced modulation schemes

2014-12-11 15© SP, Klas Yhland and Jörgen Stenarson

Picture: www.anritsu.com



• Power meter
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Photo: www.rohde-schwarz.com
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Frequency dependent
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Pre-calibrated or determined
at measurement start



Power meter
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Frequency

Total powerPower 
level

Broadband detection & frequency dependent error correction
=> Assumes narrowband signal
=> Multiple signals become difficult to measure



Power meter, thermocouple sensor

2014-12-11 18© SP, Klas Yhland and Jörgen Stenarson

RF power
Vout

Thermocouple

R

-70              -60              -50             -40              -30                 -20                -10                  0 10               20 [dBm]

Δt ≈ 1 mK Δt ≈ 100 K

Heating is proportional to power
=> Measures true power (true rms)

Set by damage levelSet by thermal drift 



Power meter, diode sensor
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Schematic: www.agilent.com
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Pnoise = kTB DamageSquare law region ௗܸ௖ ∝ ௥ܲ௙ ௗܸ௖ ∝ ௥ܸ௙
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RF input Idc
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Pnoise = kTB DamageSquare law region ௗܸ௖ ∝ ௥ܲ௙
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Valid as long as 
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taylor series is valid

Power meter, diode sensor – square law region



Comparison

Power meter
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Advantages Disadvantages

Diode sensor • High sensitivity
• Fast, can measure envelope 

and peak power

• Match is worse compared to 
thermocouple

• DC blocked
• Worse linearity
• Frequency dependent linearity
• Sensitive to modulation

Thermocouple • Can measure DC (eg. R&S)
• Good match
• Measures true RMS
• Linear
• Frequency independent 

linearity

• Lower sensitivity 
• More sensitive to variations in 

ambient temperature



References
1. "Fundamentals of RF and Microwave Power Measurements," Agilent Technologies 

AN 1449-1, 2003.
2. "4 Steps for Making Better Power Measurements," Agilent Technologies AN 64-

4D, 2006.
3. "Choosing the Right Power Meter and Sensor," Agilent Technologies Product Note 

5968-7150, 2000.

Power meter
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Common instruments in the microwave lab
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Frequency

Power meter => Total power

Spectrum analyser => Individual frequency components 

Power 
level



Spectrum analyzer
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tunable filter
(preselector)

step 
attenuator mixer

resolution 
bandwidth 
filter
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oscillator

input



Spectrum analyzer
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The spectrum analyser measures four signals: -76, -8, -8 and -82 dBm
A power meter would measure -5 dBm 
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• Upper limit: Nonlinearities
– Causing compression, harmonics, intermodulation
– Attenuator dependent

• Lower limit: Noise
– Attenuator dependent
– Resolution bandwidth dependent

The dynamic range has two limits 
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• Cause
– Saturation, e.g. in an amplifier PRF out < PDC + PRF in

Nonlinearities, cause and impact

• Impact
– Compression
– One input tone => harmonics 2f, 3f, 4f, … 
– Several input tones => intermodulation (IM)  

2f1, 2f2, 3f1, 3f2, f1 ± f2, f1 ± 2f2, 2f1 ± f2 , …

RF in

DC bias

RF out
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Spectrum analyzer
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Nonlinearities, countermeasure

tunable filter
(preselector)

step 
attenuator mixer

resolution 
bandwidth 
filter

IF
gain

log
amp display

envelope
detector

A/D

video filter
(averaging)

local 
oscillator

input

Increase the step attenuator
(=> less signal, worse SNR)
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Noise, impact
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Signals close to the noise floor will be overestimated. 
(If they can be distinguished from the noise)
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Noise, countermeasure

tunable filter
(preselector)

step 
attenuator mixer

resolution 
bandwidth 
filter

IF
gain

log
amp display

envelop
detector

A/D

video filter
(averaging)

local 
oscillator

input

Decrease the step attenuator
(=> increased nonlinearities)

Reduce RBW
(=> slower, must keep 
RBW >> signal bandwith)

Reduce VBW
(not very efficient)



Spectrum analyzer

• References
1. C. Rauscher, "Fundamentals of Spectrum Analysis" Rhode & Schwarz, 2002.
2. Agilent, "Application Note AN-150, Spectrum Analysis Basics," Agilent 

Technologies 2004
3. Agilent, "Application Note 1286-1, 8 Hints for Better Spectrum Analysis," Agilent 

Technologies 2005
4. Agilent, "Application Note 1391, 8 Hints for Better Millimeter-Wave Spectrum 

Measurements," Agilent Technologies 2001
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Common instruments in the microwave lab

• Network analyzer
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Network analyzer

• References
1. M. Hiebel, Fundamentals of Vector Network Analysis: Rhode & Schwarz, 2007.
2. B. Schiek, "Developments in Automatic-Network Analyzer Calibration Methods," 

in Review of Radio Science 1993-1996, W. R. Stone, Ed., 1996, pp. 115-155.
3. Agilent, "Applying error correction to network analyzer measurement," Agilent 

Technologies AN 1287-3, 2002.
4. Agilent, "Understanding the fundamental principles of VNAs,"  AN1287-1, 1997.
5. Agilent, "Network analyzer Measurements: Filter and amplifier examples,"  

AN1287-4, 1997.
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Vector Network Analyzer (VNA) Measurements

Klas Yhland and Jörgen Stenarson
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Contents

• One-port measurements
• SOL calibration algorithm

• Two-port measurements
• SOLR calibration algorithm
• TRL/LRL/LRM calibration algorithm
• SOLT calibration algorithm

• Connecting your DUT
• Verifying your calibration
• Errors in the calibration
• Further reading
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The measurement need
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What does a measurement look like?

2014-12-11 4© SP, Klas Yhland and Jörgen Stenarson

Resistor
62 Ω2.1 cm 50 Ω line

• Uncorrected data

62 Ω => |Γ| ≈ 0.11 
RL ≈ -19 dB

2.1 cm = λ/4 @ ~3.6 GHz 

Measurement does not agree!

VNA



One-port network analyzer
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One-port network analyzer
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One-port calibration and measurement

• Three known standards are required to calibrate the one-port VNA
• Usually Short, Open, and Load
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One-port VNA calibration – Short-Open-Load
• Three known standards (SOL) ⇒ determine three unknown error terms

• Short
• Open
• Load

• Traditionally model based
• In modern VNAs also table based
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What does a measurement look like?
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• Corrected data

2.1 cm 50 Ω line

62 Ω => |Γ| ≈ 0.11 
RL ≈ -19 dB

2.1 cm ≈ λ/4 @ 3.6 GHz 
VNA Resistor

62 Ω



While doing calibration look at uncorrected 
measurements. What should we expect?
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Corrected measurements
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Contents

• One-port measurements
– SOL calibration algorithm

• Two-port measurements
• SOLR calibration algorithm
• TRL/LRL/LRM calibration algorithm
• SOLT calibration algorithm

• Connecting your DUT
• Verifying your calibration
• Errors in the calibration
• Further reading
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S-parameters

• Transfer functions for incident and reflected waves at the ports
• Complex as a function of frequency
• Defined in relation to the system impedance
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Four-sampler VNA block-diagram
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Ideal VNA
• Linear
• Noise less
• Perfect port match
• Perfect directivity
• Perfect switch isolation



Two-port measurements
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Two-port measurements
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Eight (Seven) term error model
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Four receivers
Two-port theory
Advanced calibration methods

DUT

DUT

DUTEa Eb



Unknown Thru (SOLR)

• Eight-term error model
• Same one-port calibrations as in SOL
• Only reciprocity is required of the Thru standard
• Load standard determines system impedance
• Not practical for on-wafer calibration
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Non-mating connectors are easily handled by SOLR

• Male – Male
• Female – Female
• Type-N – 3.5 mm
• Coaxial – planar
• Waveguide – coaxial
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Thru Reflect Line (TRL/LRL/LRM)

• Self-calibration technique
• Well matched line or match standard
• Same reflect standard on both ports
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Thru Reflect Line (TRL/LRL/LRM)

• Eight-term error model
• Good quality transmission line standards/Match standard

– Line characteristic impedance sets system impedance
– Electrical length (20°-160°), specify delay (ps)

• Equal reflection standards on each port
– Approximate reflection within (known ±90°), specify delay and DC reflection
– Non-equal reflect standards influence the reference plane positions

• Often easier to manufacture than SOL for planar and wave-guide circuits
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Use LRM rather than TRL at low frequencies

• The line standard becomes very long if it is to work at low frequencies
• When using TRL the system impedance is equal to the characteristic 

impedance of the Line standard
• The characteristic impedance of most delay lines deviates rapidly from 50 Ω

at low frequencies due to skin effect
=> At low frequencies ~200 MHz, it is better to use LRM with a lumped load
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Root choice problem in TRL algorithm
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Line Reflect



Erroneous root choice for Line standard
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Measurement on Line Measurement on Short

Change the delay specification of the Line standard



Erroneous root choice for Reflect standard
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Measurement on Line Measurement on Short

Change the offset delay specification of the Reflect standard



Three-sampler VNA block-diagram
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Three sampler VNA / Twelve term error model
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First solved by Stig Rehnmark from Chalmers:
Rehnmark, S.; , "On the Calibration Process of Automatic Network Analyzer Systems (Short Papers)," 
Microwave Theory and Techniques, IEEE Transactions on , vol.22, no.4, pp. 457- 458, Apr 1974

DUT

DUT



One-port

THRU

Short Open Load Thru (SOLT)

• Twelve term model
• Same one-port calibrations as in SOL
• Needs fully known standards
• Load standard determines system impedance
• Difficult to handle non-mating connectors
• Not practical for on-wafer calibration
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The isolation calibration problem

• The isolation term is rarely a good model of the leakage
• The isolation calibration step measures noise on a good VNA
• Need a sixteen term to model isolation properly

Skip the isolation term!!
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Non-mating connectors are a problem for SOLT

• Male – Male
• Female – Female
• Type-N – 3.5 mm
• Coaxial – planar
• Waveguide – coaxial
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Adapter removal

• SOLT requires Thru connection
• Two full two-port calibrations are combined to get the final calset

– Specify electrical length of adapter within 180°
– Can be difficult to specify electrical length for waveguides

• Twice the work of a single calibration
• Sensitive to repeatability problems
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Summarized requirements on calibration standards
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SOLR SOLT TRL/LRL/LRM
One-port standards Full model or 

measured data 
needed

Full model or 
measured data 

needed

Equal on both ports
Phase known within 180°

Thru standard Reciprocity assumed
Known within 180°

Ideal Thru assumed
Transmission difference 

within 20°-160°
Line standard

System impedance 
defined by

Load Load Line or Match

Reference planes 
defined by

Short and Open Short, Open, and 
Thru

Reflect and Thru

Handles non-
insertable devices

Yes, simple Yes, tedious No



Electronic calibration unit

• E-cal is faster, only one connection
• E-cal stores S-parameter table model internally, requires a modern VNA
• E-cal unit is locked to one manufacturer
• Only available in coaxial
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… …



Contents

• One-port measurements
– SOL calibration algorithm

• Two-port measurements
• SOLR calibration algorithm
• TRL/LRL/LRM calibration algorithm
• SOLT calibration algorithm

• Connecting your DUT
• Verifying your calibration
• Errors in the calibration
• Further reading
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Connecting your DUT, Coaxial
Connector types

3.5mm

2.92mm

2.4mm

APC7

Type-N

SMA

1.85mm
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• 7/16 (16 mm) 0 – 7.5 GHz

• Type-N (7 mm) 0 – 18 GHz

• APC-7 (7 mm) 0 – 18 GHz (do not tighten both nuts)

• SMA 0 – 18 (26.5) GHz (too long male pin)
• 3.5 mm 0 – 26.5 (33) GHz
• 2.92 mm (K) 0 – 40 (46) GHz

• 2.4 mm 0 – 50 GHz
• 1.85 mm (V) 0 – 65 GHz

• 1 mm 0 – 110 GHz

• Upper frequency limit is usually caused by first waveguide mode

Connecting your DUT, Coaxial
Preferred connectors 

Compatible

Compatible
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Connecting your DUT, Coaxial 
Fingers of slotted 2.4mm female connector
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Connecting your DUT, Coaxial 
Damaged fingers of slotted 2.92mm female connector

2014-12-11 38© SP, Klas Yhland and Jörgen Stenarson



Connecting your DUT, Coaxial 
Making connection
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• Inspect connectors before mating, do not use damaged connectors
• Align connectors before mating
• Use fingers to pre-tighten the nut
• Only rotate nut – Do NOT rotate connector body
• Use proper torque wrench to do final tightening
• Use spanners to hold body in place while torquing



Connecting your DUT, Coaxial 

• Preferred calibration kits
– Electronic calibration units (most convenient)
– Short-Open-Load (easiest to use of the mechanical kits)
– Short-Open-Sliding load (more difficult to handle)
– TRL (most difficult to handle, fragile)

• Hints
– The reference plane will be at the connector interface and not in the circuit
– For some VNAs and calibration kits when the dialog says "male short" it 

refers to a female short connected to a male test port  Check the manual 
and the cal kit definition in the VNA.

– Avoid SMA (one-time connectors with a too long male centre pin which 
easily damages compatible 3.5 mm and 2.92 mm connectors)

– Avoid BNC, TNC, SMB… (no calibration kits available, reference planes 
are unclear)
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Connecting your DUT, Waveguide

• Preferred waveguides
– Any standard waveguide (well established up to 110 GHz)

• Preferred calibration kits
– TRL (many commercially available kits)

• Hints
– Use all screws in the flange
– The reference plane will be at the waveguide interface and not in the 

circuit
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Connecting your DUT, substrate fixture 

• Fixtures
– Anritsu/Wiltron
– Rosenberger
– Maury
– Focus

• Preferred calibration kits
– TRL (easiest to manufacture but has to be made on the same substrate 

type as the DUT)
• Hints

– Adapt your circuits to fit the fixture, read the manual.
– The report [13] contains many valuable hints for the Anritsu 3680 fixture
– The reference plane will be at the reference plane of your TRL kit
– Repeatable connections are essential
– Commercial fixtures may seem expensive but home made ones require 

much effort before they perform just half as well as commercial ones
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Connecting your DUT, on-wafer probe
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Connecting your DUT, on-wafer probe

• Preferred probes
– GSG probes with appropriate pitch

• Preferred calibration kits
– TRL kit on the same wafer as the DUT
– LRM alumina standard substrate from probe manufacturer. (DUT and 

calibration kit substrates have to be equal. Match relies on laser trimmed 
load)

• Hints
– Using a standard substrate the reference plane will be at the probe tips
– Always use the same approach to set down the probes to get consistent 

results
– Always look in the microscope when moving the probes, there is no 

standard way to turn the probe manipulators to lift the probes
– Avoid needle probes (good for low frequency measurements)
– Avoid GS probes (Ground-Signal) (good for lower microwave region)
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Impedance standard substrate
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Verifying your calibration

• Re-measure calibration standards. Reconnect devices!
• Measure a known device
• Measure a simple computable device

(high/low impedance line)
• Measure long line standards

– low S11 & S22

– S12 & S21 should be equal and have low ripple
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Connection repeatability

• Use prescribed tools to do connections
– Torque wrenches for coaxial connectors
– All screws for waveguide flanges

• In fixtures
– To succeed in the removal of the coax – microstrip transition we 

need very good repeatability
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1-21 GHz, Measurement of a resistor
Red – Good transition repeatability
Blue – Bad transition repeatability



Cable flex

• Many flexible cables have poor phase and amplitude stability
• Even expensive VNA testport cables can be damaged and show poor 

phase and amplitude stability
• When measurements are erratic and change a lot when you touch 

the setup, bad cables or loose connections may be the cause
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Isolation

• Internal switch can leak signal to the opposite port
• Leakage between the test ports

– No problem for coaxial 
– Problems for open structures, e.g. MMICs or microstrip substrates
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Using adapters after calibration, 
measurement on a 6 dB attenuator
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• Phase errors
• Mismatch errors
• Amplitude errors



Adapter phase error graph
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Dynamic range

• Mostly a problem for transmission measurements
– Noise floor and isolation limits the maximum attenuation that 

can be measured
– Non-linearities/compression limits the maximum gain 

(remember that both the VNA and the DUT can be non-linear)
• Rarely a problem for reflection

– Directivity is the main limitation which limits the requirements 
for high dynamic range for reflection measurements
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Further reading (1)

VNA calibration basics
[1] M. Hiebel, Fundamentals of Vector Network Analysis: Rhode & Schwarz, 2007.
[2] B. Schiek, "Developments in Automatic-Network Analyzer Calibration Methods," in Review of 

Radio Science 1993-1996, W. R. Stone, Ed., 1996, pp. 115-155.
[3] Agilent, "Applying error correction to network analyzer measurement," Agilent Technologies AN 

1287-3, 2002.
[4] Agilent, "Understanding the fundamental principles of VNAs,"  AN1287-1, 1997.
[5] Agilent, "Network analyzer Measurements: Filter and amplifier examples,"  AN1287-4, 1997.

Advanced VNA calibration
[6] Agilent, "Specifying calibration standards for the agilent 8150 network analyzer," Agilent 

Technologies AN 8510-5B, 2006.
[7] Agilent, "Calibration - Measuring Noninsertable Devices," Agilent Technologies AN 8510-13 2000.

Postprocessing
[8] Agilent, "Time Domain Analysis Using a Network Analyzer," Agilent Technologies AN1287-12, 

2007.
[9] J. Stenarson and K. Yhland, "Uncertainty Propagation Through Network Parameter Conversions," 

IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 4, pp. 1152-1157, April 
2009.
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Further reading (2)

Connectors
[10] Agilent, "Coaxial Systems: Principles of Microwave Connector care," Agilent Technologies 

AN 326, 1988.
[11] Agilent, "Connector Care Quick Reference Card," Agilent Technologies 2006.

Fixtures
[12] Agilent, "TRL for non-coaxial measurements," Agilent Technologies AN8510-8A, 2001.
[13] K. Yhland, "Measuring in-fixture S-parameters, Mixer Conversion Efficiency and Mixer 

Intermodulation" Paper F in K. Yhland, "Resistive FET mixers,“ Ph D Thesis, Chalmers University 
of Technology, 1999.

2014-12-11 57© SP, Klas Yhland and Jörgen Stenarson



Further reading (3)

S-parameter definitions
[14] R. Collin, Foundations for microwave engineering, McGraw Hill series in electrical engineering: 

McGraw-Hill, 1992.
[15] R. A. Speciale, "Derivation of the generalized scattering parameter renormalization 

transformation," in IEEE Internat. Symp. on Circuits and Systems, Houston, Tx, 1980, pp. 166-
169.

[16] R. B. Marks and D. F. Williams, "A General Waveguide Circuit Theory," Journal of Research of 
the National Institute of Standards and Technology, vol. 97, no. 5, pp. 533-561, 1992.

[17] K. Kurokawa, "Power Waves and the Scattering Matrix," IEEE Transactions on Microwave Theory 
and Techniques, vol. 13, no. 2, pp. 194-202, Mar. 1965.

[18] D. A. Frickey, "Conversion Between S, Z, Y, h, ABCD, and T parameters which are valid for 
complex source and load impedances," IEEE Transactions on Microwave Theory and 
Techniques, vol. 42, no. 2, pp. 205-211, 1994.

[19] D. F. Frickey, "Reply to comments on 'Conversion Between S, Z, Y, h, ABCD, and T parameters 
which are valid for complex source and load impedances'," IEEE Transactions on Microwave 
Theory and Techniques, vol. 43, no. 4, p. 915, 1995.
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The End

Thank you for your attention
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