

Presentation

my research interest

- - - - -

"Terahertz technology: the most scientifically rich, yet under-utilised region of the electromagnetic spectrum"

THz Properties

- Terahertz frequencies: 300
 GHz-10THz
 - * Submillimetre waves: 30µm 1mm
 - * Photon Energy levels: 1.2-40 meV
- * Non-ionisation
- Terahertz interactions with matter involve intermolecular, rather than atomic transitions
- Terahertz waves can penetrate a wide variety of non-conductive materials (as microwaves)

Nadir-Viewing
- Near-surface layer seen
between clouds but
- Little or no vertical resolution

Limb-Viewing – Vertical profiling down to mid-troposphere

MCC121 / J. Stake Lecture 1

Medical Imaging

diagnose skin cancer

spot tooth erosion earlier than x-rays

W12: Mm-Wave Technologies for Space

THz MMICs: Fabricating integrated circuits on 3 µm thick GaAs. Low parasitics & superior process control.

MCC121 / J. Stake Lecture 1

CHALMERS

STEAMR Integrated 340 GHz Receiver Module

- 340 GHz Hybrid Schottky Mixer
- 3-16 GHz m-HEMT LNA MMIC (NF=0.7dB)
- > Need for close integration, co-design!

P. J. Sobis, N. Wadefalk, A. Emrich, and J. Stake, "A Broadband, Low Noise, Integrated 340 GHz Schottky Diode Receiver," *IEEE Microw. Wireless Compon. Lett.*, vol. 22, no. 7, pp. 366–368, Jun. 2012.

IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 1, NO. 2, NOVEMBER 2011

A Low VSWR 2SB Schottky Receiver

Peter J. Sobis, Student Member, IEEE, Anders Emrich, and Jan Stake, Senior Member, IEEE

Fig. 9. Measured image rejection in a 5–18 GHz IF frequency range, at an LO drive of 6 mW at 170 GHz, for nominal IF system setup (\blacktriangle) and for the case of flipping the IF system IQ-interconnects (\Box).

Fig. 4. Photo of the 2SB receiver module split block assembly, the module outer dimensions are roughly 40 by 40 mm.

Higher circuit functionality: Need for advanced integration techniques, including passive elements (R/L/C), and high yield.

W12: Mm-Wave Technologies for Space

100 GHz MMIC packaging

MCC121 - Microwave engineering

- Based on MCC120 Foundations for microwave engineering
- Strong heritage: Challenging Rewarding
- Examiner: Professor Jan Stake, Terahertz and millimetre wave laboratory, MC2. Room: D615. jan.stake@chalmers.se

MCC121 - Microwave engineering

- Lectures: JS, Vincent Desmaris, Klas Yhland
- Tutorials: Arvid Hammar & Sascha Kraus
- Labs: Evgenii Novoselov, Parisa Aghdam

Aim

Objectives

On completion of this course unit you should be able to:

- Analyse wave propagating properties of guided wave structures (TE,TM, TEM waves, microstrip, stripline, rectangular and circular waveguides, coupled lines)
- 2) Apply N-port representations for analysing microwave circuits
- **3)** Apply the Smith chart to evaluate microwave networks
 - Design and evaluate impedance matching networks
- 5) Design, evaluate and characterise directional couplers and power dividers
- 6) Design and analyse attenuators, phase shifters and resonators
 - **)** Explain basic properties of ferrite devices (circulators, isolators)

Literature

Microwave Engineering, 4th ed, by David M. Pozar

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

Additional reading

Foundations for microwave engineering, by Robert E. Collin

This book has been used in the past, and serves well as a good reference for the microwave engineer.

Organisation

- Lectures and classes (MC2-building, Kollektorn)
- Three labs (Design and test your passive microwave circuit, + 3D EM lab)
- Visit to Omnisys!? to be announced
- One assignment
- Written exam (16/1)

ping-pong

- Learning management system
- All material will be available via ping-pong
 - https://pingpong.chalmers.se/login/
- Hand-outs are usually posted in ping-pong after the lecture
- WWW links, with relevance for your future career

Lectures and tutorials

- Check schedule! but mainly as:
 - Lectures (Jan, Vincent, Klas),
 - Tuesdays 13:15-15:00 in A423
 - Thursdays 13:15-15:00 in A423
 - Tutorials (starts from Thursday with Arvid)
 - Tuesdays 15:15-17:00 in A423
 - Thursdays 15:15-17:00 in A423
- Guest lecture on measurement techniques by Dr. Klas Yhland (11/12).

Lectures - tentative schedule

➡ w45	4/11 LI	Introduction (ChI)
	4/11 L2	Transmission lines theory, Smith Chart (Ch2)
w 46	/ L3	Transmission lines and waveguides (Ch3.1-3,5)
	3/ L4	Transmission lines and waveguides (Ch3.6-3.11)
➡w47	18/11L5	Circuit theory / Matrix representations (Ch4)
	20/11L6	Impedance matching (Ch5.1-5.4)
	20/11L7	Impedance transformers (Ch5.5-5.9)
w 48	25/11L8	Attenuators, loads, basic properties of power dividers and couplers
	28/11L9 (V	D) Microwave resonators (Ch 6)
➡w49	2/12 LIO	Directional couplers (Ch7)
➡ w50	9/12 LII	Periodic structures (Ch8.1)
	/ 2L 2(KY) Microwave measurement techniques (guest lecture)
→ w51	16/12L13 (VD) Isolators, circulators, ferrites (Ch 9)
	18/12L14	Reserve

Labs and assignments

- Design of a branch line coupler (microstrip lines). Week 4
- Measurements in week 6
- 3D EM Lab (hollow waveguides, Chebyshev transformers, etc)
- Assignment impedance matching. Week 4
- To be posted...

CHALMERS INIVERSITY OF TECHNOL

Lab 3: 3D EM demo

- Introduction to EM software (Ansoft HFSS), ca 45 minutes. Parisa Aghdam
- Friday, 7/11, 1315!

Course representatives

• Course representatives

Course representatives for MCC121 Microwave engineering, Study Period 2 2014

MPWPSuttam@student.chalmers.seMPWPSstafylas@student.chalmers.seMPWPSteleanu@student.chalmers.seMPWPSyaxin@student.chalmers.se

UTTAM NANDI THOMAS STAFYLAS ELENA LUIZA TELEANU ZHANG YAXIN

- Meetings
 - Course Week I
 - Course week 3-4
 - After examination (Early next year)

CHALMERS

Examination MCC121 - 7.5 hec

- List of compulsory tasks:
 - Lab I-3 : Pass/Not passed
 - Assignment: IOp (Pass $\geq 4p$)
- Written exam: $6 \times 10p = 60p$ (Pass $\geq 24p$)
- Total number of points: 70p. Note! Bonus from assignment only counted at first exam.
- You need to pass each task described above
- Final grades: 3 (\geq 28p), 4(\geq 42p) and 5 (\geq 56p)

The EM spectrum

THE ELECTROMAGNETIC SPECTRUM

Microwave applications

Typical Frequencies

Approximate Band Designations

AM broadcast band	535–1605 kHz	Medium frequency	300 kHz-3 MHz
Short wave radio band	3–30 MHz	High frequency (HF)	3 MHz-30 MHz
FM broadcast band	88–108 MHz	Very high frequency (VHF)	30 MHz-300 MHz
VHF TV (2-4)	54–72 MHz	Ultra high frequency (UHF)	300 MHz-3 GHz
VHF TV (5-6)	76–88 MHz	L band	1–2 GHz
UHF TV (7-13)	174–216 MHz	S band	2–4 GHz
UHF TV (14-83)	470–890 MHz	C band	4–8 GHz
US cellular telephone	824–849 MHz	X band	8-12 GHz
	869–894 MHz	Ku band	12-18 GHz
European GSM cellular	880–915 MHz	K band	18-26 GHz
an agammen = presented a finan Gammen - Schollard Heingeler	925–960 MHz	Ka band	26–40 GHz
GPS	1575.42 MHz	U band	40-60 GHz
	1227.60 MHz	V band	50-75 GHz
Microwave ovens	2.45 GHz	E band	60–90 GHz
US DBS	11.7-12.5 GHz	W band	75–110 GHz
US ISM bands	902–928 MHz	F band	90–140 GHz
	2.400-2.484 GHz		
	5.725-5.850 GHz		
US UWB radio	3.1–10.6 GHz		

MCC121 / J. Stake Lecture 1 Figure 1.1 © John Wiley & Sons, Inc. All rights reserved.

communication links example: point-to-point data link

other

- RADARs for safety and security
 - Weather
 - Traffic control
 - Military applications
 - Cars
- Heating (industrial, medical, food)
- High speed data transfer
- Science (radio astronomy, atmosphere)

Microwaves?

Microwave engineering

• RF/Microwaves (0.3 - 30 GHz)

- $\lambda \in (1 \text{ cm}, 1 \text{ m})$

- Millimetre waves (30 300 GHz)
 - $\lambda \in (1 \text{mm}, 10 \text{mm})$
- Sub-millimetre waves (0.3 3 THz)

- $\lambda \in (0.1 \text{mm}, 1 \text{mm})$

Aim

Microwave way of thinking

- Short wavelengths -> same order of magnitude as the circuit elements and devices employed
 - jump between EM / Equivalent circuits
- & calculates everything in dB
- and like to use Smith charts for almost everything

FrequencyType of componentsf < x > GHzlumped ($\leq \lambda / 10$)f > x > GHzdistributed

short wavelength gives propagation time comparable with the period of the propagating wave

Kirchhoff's laws are not applicable, standard voltage-current concepts are no longer sufficient (but still convenient...)

Lumped (discrete) components

Spiral inductor

			88	200	 					88	 		-
10	888	88	88	933	-	-	_			200			8
12	822				10								
		-									888		83
10									200			200	2
					_								22
	-	88	-	-	 			888	-	88	899	88	82
-		_	-		 						 		÷.,

Interdigital gap capacitor

Metal-insulatormetal capacitor

Chip capacitor

Parasitics: equivalent circuit becomes more complicated as frequency increases

Distributed components Transmission lines

Transmission Line	Structure	Properties
Microstrip		The most common type of transmission line, suitable for both hybrids and monolithic circuits. Moderately dispersive at high frequencies. See Section 1.3.3.
Coplanar waveguide (CPW)		Somewhat lossier and more dispersive than microstrip, but minimizes the parasitic induc- tance of ground connections. Good transition to coaxial lines. Spurious slotline and microstrip modes are possible. See Section 1.3.4.
Stripline		Does not allow convenient mounting of discrete circuit elements; best for passive components. Difficult to cas- cade with microstrip or other planar transmission lines. Low loss, TEM, good transition to coax. See Section 1.3.5.
Suspended- substrate stripline (SSSL)		Similar to stripline, but easier to fabricate in many types of circuits. Low loss, low effec- tive dielectric constant, good transition to coax. Waveguide- like modes can be a problem. See Section 1.3.6.

MCC121 / J. Stake Lecture 1

Scattering parameters for analysis and characterisation

History of Microwaves milestones

Maxwell's equations

$$\nabla \cdot \mathbf{D} = \rho_f$$
 Gauss's law

 $\nabla\cdot\mathbf{B}=0$

$$abla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 Faraday's law
 $abla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$ Ampere's law with Maxwell's correction

Experimental work (1880 -1900)

Heinrich Hertz

Jagadish Chandra Bose (horns, polarisers, semiconductors, detectors, even up to 60GHz

MCC121 / J. Lecture I

Theory for guided waves

John William Strutt = Lord Rayleigh (1897), theory for waveguides

t<1939

G. Southworth (1932) & W. L. Barrow (1936), experiments with waveguides

During WW2 (1939-1945)

- RADAR
- Magnetron

- Radiation laboratory, MIT
- Microwave Research Institute, Brooklyn, NY

Post WW2 (>1945)

- Planar transmission lines
- RF transistors BJT, FET, HEMT, HBT
- Integrated circuits: MMICs
- Direct Broadcasting Satellites
- Remote sensing
- Cellular telephony, WIFI, consumer electronics

Passive microwave research today

- Periodic structures! But called photonic band gaps and metamaterials...
- Miniaturised THz waveguides, antennas
- Filters, couplers, phase shifters, etc.
- EDA tools etc.

IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY

EXPANDING THE USE OF THE LECTROMAGNETIC SPECTRUM"

IEEE

Summary of lecture I

- Read chapter I-2,
- Milestones of Microwaves
 - EM wave theory
 - Waves on transmission lines
 - Overview of microwave engineering