Tentamen MMA110/TMV100 Integration Theory

2014-01-15 kl. 8.30-12.30

Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers
Telefonvakt: Jakob Hultgren, telefon: 0703088304
Hjälpmedel: Inga hjälpmedel.
This exam together with the hand-in exercises provides the grounds for grading. A total score of 18 is needed for the grade 3 or G, 28 for 4 and 38 for 5 or VG. For 3 or G one also needs at least 6 points at this exam and for the grade 4 one also needs at least 10 points on this exam.

Solutions will be published on the course url, the day efter the exam.

1. $(4 \mathrm{p})$ Let f and g be measurable functions on the measurable space (X, \mathcal{M}). Prove that $f g$ is measurable.

Solution. Assume first that $f, g \geq 0$. If $f(x) g(x)>c$ for a nonnegative number c, then there must exist a nonnegative rational number q such that $f(x)>q$ and $g(x)>1 / q$. Hence

$$
\{x: f(x) g(x)>c\}=\bigcup_{q \in \mathbb{Q} \cap[0, \infty)}(\{x: f(x)>q\} \cap\{x: g(x)>c / q\})
$$

This proves that $f g$ is measurable. In the general case, write $f=f^{+}-f^{-}$and $g=g^{+}-g^{-}$. then $f g=f^{+} g^{+}+f^{-} f^{-}-f^{+} g^{-}-f^{-} g^{+}$and since sums of measurable functions are measurable, we are done.
2. (4p) Let (X, \mathcal{M}, μ) be a semifinite measure space; recall that μ semifinite by definition means that whenever $\mu(E)=\infty$, then there exists $F \subset E$ such that $0<\mu(F)<\infty$. Prove that more generally, for any $0<c<\infty$, there exists a set $F \subseteq E$ such that $c<\mu(F)<\infty$.

Solution. Suppose to the contrary that $s:=\sup \{c: \exists F \subset E: c<\mu(F)<\infty\}<\infty$. Then for each $n=1,2, \ldots$, there is an $F_{n} \subset E$ with $s-1 / n<\mu\left(F_{n}\right) \leq s$. Taking $F=\bigcup_{n} F_{n}$, we get $\mu(F)=s$. However since $\mu(E \backslash F)=\infty$, there is a $G \subset E \backslash F$ such that $0<\mu(G)<\infty$, so that $F \cup G \subset E$ and $s<\mu(F \cup G)<\infty$, a contradiction to the definition of s.
3. $(4 p)$ Find the limit

$$
\lim _{n \rightarrow \infty} n \int_{-1}^{1}\left(1-t^{2}\right)^{n^{2}}\left(1+n^{2} \sin \left(t^{2}\right)\right) d t
$$

Solution. By substituting $t=s / n$, we want to calculate the limit

$$
\lim _{n} \int_{-n}^{n}\left(1-\frac{s^{2}}{n^{2}}\right)^{n^{2}}\left(1+n^{2} \sin \left(s^{2} / n^{2}\right)\right) d s=\lim _{n} \int f_{n}(s) d s
$$

where $f_{n}(s)=\chi_{[-n, n]}(s)\left(1+s^{2} / n^{2}\right)^{n^{2}}\left(1+n^{2} \sin \left(s^{2} / n^{2}\right)\right)$ which is positive and approaches the limit $g(s)=2 e^{-s^{2}}$, since $n^{2} \sin \left(s^{2} / n^{2}\right)=\sin \left(s^{2} / n^{2}\right) /\left(1 / n^{2}\right) \rightarrow 1$. Since $\left|f_{n}(s)\right| \leq$ $e^{-s^{2}}\left(1+s^{2}\right)$ and the right hand side defines an integrable function, dominated convergence gives that the desired limit is

$$
\int_{\mathbb{R}} 2 e^{-s^{2}} d s=2 \sqrt{\pi}
$$

4. $(4 \mathrm{p})$ Let μ_{n} be the law of the standard normal probability distribution on \mathbb{R}^{n}, i.e.

$$
\mu_{n}(B)=\int_{B} \frac{1}{(2 \pi)^{n / 2}} e^{-|x|^{2} / 2} d x
$$

for all $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. Compute

$$
\lim _{k \rightarrow \infty} \int \prod_{i=1}^{n}\left(1+\frac{x_{i}+x_{i}^{2}}{4 k}\right)^{k} d \mu_{n}(x)
$$

Solution. Note that

$$
0 \leq\left(1+\frac{x_{i}+x_{i}^{2}}{4 k}\right)^{k} \rightarrow e^{\left(x_{i}+x_{i}+2\right) / 4}
$$

Therefore

$$
\prod_{1}^{n}\left(1+\frac{x_{i}+x_{i}^{2}}{4 k}\right)^{k} \rightarrow g(x):=\prod_{1}^{n} e^{\left(x_{i}+x_{i}^{2}\right) / 4}
$$

Observe now that $g \in L^{1}\left(\mu_{n}\right)$ since by Tonelli,

$$
\int g d \mu_{n}=\prod_{1}^{n} \int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi}} e^{\left(x-x^{2}\right) / 4} d x=e^{n / 16} \int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi}} e^{-(x-1 / 2)^{2} / 4} d x=e^{n / 16} 2^{n / 2}
$$

Hence by dominated convergence, the limit we were asked for is $e^{n / 16} 2^{n / 2}$.
5. (4p) Let $(X, \mathcal{M}, \mathbb{P})$ be a probability space and let ξ_{1}, ξ_{2}, \ldots be iid random variables that are not in L^{1}. Prove that

$$
\limsup _{n}\left|\frac{1}{n} \sum_{i=1}^{n} \xi_{i}\right|=\infty
$$

almost surely.
Solution. Note that for any nonnegative random variable $\eta, \mathbb{E}[\eta]=\sum_{n=1}^{\infty} \mathbb{P}(\eta \geq n)$. Hence $\sum_{n} \mathbb{P}\left(\left|\xi_{n}\right| \geq n\right)=\sum_{n} \mathbb{P}\left(\left|\xi_{1}\right| \geq n\right)=\infty$. By Borel-Cantelli, $\left|\xi_{n}(x)\right| \geq n$ for infinitely many n for almost every x. Pick such an x and assume without loss of generality that $\xi_{n}(x) \geq n$ for infinitely many n. Assume now for contradiction that $(1 / m)\left|\sum_{1}^{m} \xi_{i}(x)\right| \leq K$ for all m for some finite K. Pick an $n \geq 3 K$ such that $\xi_{n+1} \geq n+1$. Then it is not possible to have the average of the n first and of the $n+1$ first ξ_{i} : s to both be bounded by K in absolute value, a contradiction.
6. $(4 \mathrm{p})$ Construct a Lebesgue measurable set $E \subset[0,1]$ such that for every open interval $I \subseteq[0,1]$, one has $0<m(E \cap I)<m(I)$.

Solution. Use the following variant of the Cantor set. Let $A_{1}=[0,1]$. Let $A_{2}=A_{1} \backslash$ $(1 / 4,3 / 4)$. Let A_{3} be A_{2} with the open middle fourth of the two intervals $[0,1 / 4]$ and $[3 / 4,1]$ removed. Let A_{4} be A_{3} with the middle 8 'th of the four pieces removed, etc. Let $B_{1}=\bigcap_{n} A_{n}$. Then $1 / 2>m\left(B_{1}\right)=(1 / 2)(3 / 4)(7 / 8) \ldots>0$ and B_{1} is closed, so that we can write B_{1}^{c} as the countable union of disjoint open intervals I_{1}, I_{2}, \ldots. Next we start a second stage, where we on each of these I_{n} 's, we construct a new Cantor type set of measure between 0 and $1 / 4$ and add these to B_{1} to get B_{2}. Next in the third stage, on each disjoint open interval making up B_{2}^{c} construct a new Cantor type set of measure between 0 and $1 / 8$, etc and add these to B_{2} to make up B_{3} and so on. Finally let $B=\bigcup_{n} B_{n}$. If I is an arbitrary open interval, then for some stage, one of the I_{n} 's will be contained in I and hence B contains the Cantor type set on I_{n} on in this stage and has hence positive measure. On the other hand if I_{n} is on stage k, then $\mu\left(B \cap I_{n}\right) \leq \mu\left(I_{n}\right) / 2^{k}$ and hence $\mu(B \cap I)<\mu(I)$.

Lycka till!
Johan Jonasson

