Tentamen MMA110/TMV100 Integration Theory

2013-10-24 kl. 8.30-12.30

Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers
Telefonvakt: Anna Persson, telefon: 0703088304
Hjälpmedel: Inga hjälpmedel.
This exam together with the hand-in exercises provides the grounds for grading. A total score of 18 is needed for the grade 3 or G, 28 for 4 and 38 for 5 or VG. For 3 or G one also needs at least 6 points at this exam and for the grade 4 one also needs at least 10 points on this exam.

Solutions will be published on the course url, the day efter the exam.

1. (4p) Assume that $(X, \mathcal{P}(X), \mu)$ is a measure space such that $\mu\{x\}>0$ for all $x \in X$. Define $d: \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow \mathbb{R}_{+}$by

$$
d(A, B)=\mu(A \Delta B)
$$

Prove that d is a metric on $\mathcal{P}(X)$, i.e. that

- $d(A, B)=0 \Leftrightarrow A=B$,
- $d(A, B)=d(B, A)$ for all A, B,
- $d(A, C) \leq d(A, B)+d(B, C)$ for all A, B, C.

Solution. The left implication in the first part is obvious. Also if $A \neq B$, then $A \Delta B$ is nonempty and has thus nonzero measure since all singleton sets are assumed to have nonzero measure. The second part is immediate since Δ is commutative. For the third part, observe that $A \Delta C \subseteq(A \Delta B) \cup(B \Delta C)$ and that the right hand side has measure at most $\mu(A \Delta B)+\mu(B \Delta C)$.
2. (4p) Let ν be a signed measure on (X, \mathcal{M}) and let λ and μ be two measures such that $\nu=\lambda-\mu$. Show that then $\lambda \geq \nu^{+}$and $\mu \geq \nu^{-}$.
Solution. Let $P \cup N$ be a Hahn decomposition of X with respect to ν. Then for any measurable set $E \subset P, \lambda(E) \geq \lambda(E)-\mu(E)=\nu(E)=\nu^{+}(E)$. For general E we then get $\lambda(E) \geq \lambda(E \cap P) \geq \nu^{+}(E \cap P)=\nu^{+}(E)$. The other part is analogous.
3. (4p) Let (X, \mathcal{M}, μ) be a measure space. Let

$$
\overline{\mathcal{M}}=\{A \cup N: A \in \mathcal{M}, \exists B \in \mathcal{M}: \mu(B)=0, B \supseteq N\} .
$$

Prove that $\overline{\mathcal{M}}$ is a σ-algebra. Prove also that $\bar{\mu}: \overline{\mathcal{M}} \rightarrow \mathbb{R}_{+}$given by

$$
\bar{\mu}(A \cup N)=\mu(A)
$$

is a measure.
Solution. It is obvious that \bar{M} is closed under countable unions and contains X. For closedness under complements: let $A \cup N \in \bar{M}$ and let B be a null set that contains N. Then $(A \cup N)^{c}=(A \cup B)^{c} \cup(B \backslash N)$ which is also a set in \bar{M}. To show that $\bar{\mu}$ is a measure is easy.
4. (4p) Let $(X, \mathcal{M}, \mathbb{P})$ be a probability space and let ξ_{1}, ξ_{2}, \ldots be iid random variables that are not in L^{1}. Prove that

$$
\limsup _{n}\left|\frac{1}{n} \sum_{i=1}^{n} \xi_{i}\right|=\infty
$$

almost surely.
Solution. Note that for any nonnegative random variable $\eta, \mathbb{E}[\eta]=\sum_{n=1}^{\infty} \mathbb{P}(\eta \geq n)$. Hence $\sum_{n} \mathbb{P}\left(\left|\xi_{n}\right| \geq n\right)=\sum_{n} \mathbb{P}\left(\left|\xi_{1}\right| \geq n\right)=\infty$. By Borel-Cantelli, $\left|\xi_{n}(x)\right| \geq n$ for infinitely many n for almost every x. Pick such an x and assume without loss of generality that $\xi_{n}(x) \geq n$ for infinitely many n. Assume now for contradiction that $(1 / m)\left|\sum_{1}^{m} \xi_{i}(x)\right| \leq K$ for all m for some finite K. Pick an $n \geq 3 K$ such that $\xi_{n+1} \geq n+1$. Then it is not possible to have the average of the n first and of the $n+1$ first ξ_{i} :s to both be bounded by K in absolute value, a contradiction.
5. (4p) Let (X, \mathcal{M}, μ) be a measure space and f_{1}, f_{2}, \ldots real-valued measurable functions such that

$$
\underset{n}{\lim \sup } n^{2} \mu\left\{x:\left|f_{n}(x)\right| \geq n^{-2}\right\}<\infty
$$

Prove that $\sum_{n=1}^{\infty} f_{n}(x)$ converges absolutely for almost every x.
Solution. Let $C=\lim \sup _{n} n^{2} \mu\left\{\left|f_{n}\right| \geq n^{-2}\right\}$. Then $\mu\left\{\left|f_{n}\right| \geq n^{-2}\right\} \leq C / n^{2}$ for all but finitely many n. Hence by the MCT,

$$
\int \sum_{n} \chi_{\left\{\left|f_{n}\right| \geq n\right\}} d \mu<\infty .
$$

Thus $\sum_{n} \chi_{\left\{\left|f_{n}(x)\right| \geq n\right\}}$ converges for a.e. x, i.e., for a.e. $x,\left|f_{n}(x)\right| \leq 1 / n^{2}$ for all but finitely many n. From this it follows that $\sum_{n}\left|f_{n}(x)\right|<\infty$ for such x.
6. (4p) Let m be the Lebesgue measure on \mathbb{R} and let $E \in \mathcal{L}(\mathbb{R})$ be such that $m(E)>0$. Let $\hat{E}=\{x-y: x, y \in E\}$. Prove that \hat{E} must contain an open interval that contains 0 .

Solution. Recall that in general for a Lebesgue set $A, m(A)=\inf \sum_{k=1}^{\infty} m\left(I_{k}\right)$, where the infimum is taken over all sets of disjoint intervals I_{k} such that $\bigcup_{k} I_{k} \supseteq A$. Hence for any $a<1$, there is a set of I_{k} :s covering A such that

$$
m(A)=\sum_{k} m\left(A \cap I_{k}\right) \leq \sum_{k} m\left(I_{k}\right)<a^{-1} m(A)
$$

so for at least one of the $I_{k}: s$, we have $m\left(A \cap I_{k}\right)>a m\left(I_{k}\right)$. In particular this means that for our given E, there is an interval I such that $m(E \cap I)>(3 / 4) m(I)$. Since \hat{E} is invariant under translation, we may assume, possibly after translating and rescaling, that $I=[-1,1]$. Now for any $x \in[-1,1]$, we must have that $E \cap(x+E) \neq \emptyset$, since otherwise we would have $m(E \cup(x+E))>(3 / 2) m[-1,1]$, a contradiction since $E \cup(x+E)$ is contained in either $[-2,1]$ or $[-1,2]$. Hence there is a point $y \in E \cap(x+E)$, i.e. $y=a=x+b$ for some $a, b \in E$. However then $x=a-b$, so $x \in \hat{E}$. Consequently $\hat{E} \supseteq[-1,1]$ as desired.

