Tentamen
 MMA110/TMV100 Integration Theory

2013-08-21 kl. 14.00-18.00

Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers
Telefonvakt: Johan Jonasson, telefon: 0703088304
Hjälpmedel: Inga hjälpmedel.
This exam together with the hand-in exercises provides the grounds for grading. A total score of 18 is needed for the grade 3 or G, 28 for 4 and 38 for 5 or VG. For 3 or G one also needs at least 6 points at this exam. Solutions will be published on the course url, the day efter the exam.

1. (4p) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Lebesgue measurable and integrable and let

$$
g(x)=\int_{-\infty}^{\infty} e^{-|y|} f(x-y) d y
$$

$x \in \mathbb{R}$. Prove that g is a continuous integrable function.
Solution. By a change of variables, we have that

$$
g(x)=\int_{-\infty}^{\infty} e^{-|x-t|} f(t) d t
$$

Let $x_{n} \rightarrow x$. Since $\left|e^{-|x-t|} f(t)\right| \leq|f(t)|$ and f is integrable, the DCT gives that $g\left(x_{n}\right) \rightarrow g(x)$. By Tonelli's Theorem,

$$
\int|g(x)| d x=\int\left(e^{-|y|} \int|f(x-y)| d x\right) d y<\infty
$$

so g is integrable.
2. (4p) Let ξ_{1}, ξ_{2}, \ldots be random variables such that $\mathbb{P}\left(\xi_{n}=-3^{n}\right)=2^{-n}$ and $\mathbb{P}\left(\xi_{n}=1\right)=1-2^{-n}$. Let $S_{n}=\sum_{1}^{n} \xi_{j}$. Prove that $\mathbb{E}\left[S_{n}\right] \rightarrow-\infty$ whereas $S_{n} \rightarrow+\infty$ almost surely.

Solution. We have $\mathbb{E}\left[\xi_{n}\right]=-2^{-n} 3^{n}+1-2^{-n}<1-(3 / 2)^{n}$ so $\mathbb{E}\left[S_{n}\right] \rightarrow-\infty$. However, by Borel-Cantelli, $\xi_{n}=1$ almost surely for all but finitely many n. Hence, almost surely, $S_{n} \rightarrow+\infty$.
3. (4p) Compute the limit

$$
\lim _{n} \int_{-\sqrt{n}}^{\sqrt{n}}\left(1-\frac{x^{2}}{n}\right)^{n}(1+\sqrt{n} x) d x
$$

(Hint: Recall that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.)
Solution. By symmetry, $\int_{-\sqrt{n}}^{\sqrt{n}} \sqrt{n} x\left(1+x^{2} / n\right)^{n} d x=0$, so the limit equals

$$
\lim _{n} \int_{-\infty}^{\infty}\left(1-\frac{x^{2}}{n}\right)^{n} \chi_{[-\sqrt{n}, \sqrt{n}]}(x) d x
$$

which by dominated convergence and the hint equals $\sqrt{\pi}$.
4. (4p) Let (X, \mathcal{M}, μ) be a σ-finite measure space and let $f_{n}, n=1,2, \ldots$ and f be integrable Borel functions on X. One says that $f_{n} \rightarrow f$ in measure if for each $\epsilon>0, \lim _{n} \mu\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\right.$ $\epsilon\}=0$ as $n \rightarrow \infty$.
(a) Show that $f_{n} \rightarrow f$ in measure whenever $f_{n} \rightarrow f$ a.e. and μ is finite. Show by counterexample that this implication does not extend to σ-finite measures.
(b) Show by counterexample that $f_{n} \rightarrow f$ in measure does not imply that $f_{n} \rightarrow f$ a.e. Show, on the other hand, that if $f_{n} \rightarrow f$ in measure, then there exists a subsequence $\left\{f_{n_{k}}\right\}$ such that $f_{n_{k}} \rightarrow f$ a.e.

Solution. For (a), suppose $f_{n} \rightarrow f$ a.e. but $f_{n} \rightarrow f$ in measure fails. Then for some $\epsilon>0$, $\mu\left\{\left|f_{n}-f\right|>\epsilon\right\} \nrightarrow 0$. However since $f_{n} \rightarrow f$ a.e., $\mu\left(\lim _{\sup }^{n}\right.$ $\left.\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)=0$, by continuity of measures (since μ is finite), a contradiction. For the counterexample: let $(X, \mathcal{M}, \mu)=$ $(\mathbb{R}, \mathcal{B}, m)$ and let $f_{n}=\chi_{[n, \infty)}$.
For the counterexample in (b), let $X=[0,1]$ and $\mu=m$. Let $f_{1}=\chi_{(0,1 / 2)}, f_{2}=\chi_{(1 / 2,1)}, f_{3}=$ $\chi_{(0,1 / 4)}, \ldots, f_{6}=\chi_{(3 / 4,1)}, f_{7}=\chi_{(0,1 / 8)}, \ldots$. For the last assertion, let for $k=1,2, \ldots, n_{k}$ be such that $n \geq n_{k} \Rightarrow \mu\left\{\left|f_{n}-f\right|>1 / k\right\}<2^{-k}$. Let $E_{k}=\left\{x:\left|f_{n_{k}}(x)-f(x)\right|>1 / k\right\}$ and $F_{j}=\bigcup_{j}^{\infty} E_{k}$. Then $\mu\left(F_{1}\right) \leq 1$ so by Borel-Cantelli, $\mu\left(\limsup _{k} E_{k}\right)=0$. Hence for a.e. $x, x \in E_{k}$ for only finitely many k. However, for such $x, f_{n_{k}}(x) \rightarrow f$.
5. (4p) Let m be the Lebesgue measure on \mathbb{R}. Construct a measurable set E such that

$$
\liminf _{\delta \rightarrow 0} \frac{m(E \cap(-\delta, \delta))}{2 \delta}=\frac{1}{3}
$$

and

$$
\limsup _{\delta \rightarrow 0} \frac{m(E \cap(-\delta, \delta))}{2 \delta}=\frac{2}{3}
$$

Solution. Let $A_{n}=\left[2^{-n}, 2^{-(n-1)}\right]$ and let

$$
E=\bigcup_{j=1}^{\infty} A_{2 j}
$$

6. (4p) Let ξ be an integrable random variable on $(X, \mathcal{M}, \mathbb{P})$.
(a) Let \mathcal{G} be a sub- σ-algebra of \mathcal{M} and let η be a \mathcal{G}-measurable integrable random variable. Prove that $\mathbb{E}[\xi \eta \mid \mathcal{G}]=\eta \mathbb{E}[\xi \mid \mathcal{G}]$ almost surely.
(b) Let η and ϕ be random variables such that $\sigma(\xi, \eta)$ and $\sigma(\phi)$ are independent. Prove that $\mathbb{E}[\xi \mid \eta, \phi]=\mathbb{E}[\xi \mid \eta]$ almost surely.

Solution. For (a), let $G \in \mathcal{G}$ be arbitrary. Then if $\eta=\chi_{A}$ for some $A \in \mathcal{G}$,

$$
\begin{aligned}
& \int_{G} \mathbb{E}[\xi \eta \mid \mathcal{G}] d \mathbb{P}=\int_{G} \xi \eta d \mathbb{P}=\int_{G \cap A} \xi d \mathbb{P} \\
& \quad=\int_{G \cap A} \mathbb{E}[\xi \mid G] d \mathbb{P}=\int_{G} \eta \mathbb{E}[\xi \mid \mathcal{G}] d \mathbb{P}
\end{aligned}
$$

where the second and third equalities are by the definition of conditional expectation. By the Monotone Class Theorem and the MCT, the result now holds for all \mathcal{G}-measurable η.
In (b), we want to show that $\int_{\{(\eta, \phi) \in C\}} \mathbb{E}[\xi \mid \eta \phi] d \mathbb{P}=\int_{\{(\eta, \phi) \in C\}} \mathbb{E}[\xi \mid \eta] d \mathbb{P}$ for all $C \in \mathcal{B}\left(\mathbb{R}^{2}\right)$. By Dynkin's Lemma, it suffices to do this when $C=A \times B, A, B \in \mathcal{B}(\mathbb{R})$. However then the left hand side is

$$
\begin{gathered}
\mathbb{E}\left[\xi\left(\chi_{A} \circ \eta\right)\left(\chi_{B} \circ \phi\right)\right]=\mathbb{E}\left[\xi\left(\chi_{A} \circ \eta\right)\right] \mathbb{E}\left[\chi_{B} \circ \phi\right] \\
=\mathbb{E}\left[\mathbb{E}\left[\xi\left(\chi_{A} \circ \eta \mid \eta\right]\right] \mathbb{E}\left[\chi_{B} \circ \phi\right]=\mathbb{E}\left[\left(\chi_{A} \circ \eta \mathbb{E}[\xi \mid \eta]\right] \mathbb{E}\left[\chi_{B} \circ \phi\right]\right.\right. \\
=\mathbb{E}\left[\mathbb{E}[\xi \mid \eta]\left(\chi_{A} \circ \eta\right)\left(\chi_{B} \circ \phi\right)\right]
\end{gathered}
$$

which equals the right hand side. Here the first and fourth equalities follow from independence and the other equalities by the definition of conditional expectation.

