Tentamen MMA110/TMV100 Integration Theory

2013-01-16 kl. 8.30-12.30

Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers
Telefonvakt: Adam Andersson, telefon: 0703088304
Hjälpmedel: Inga hjälpmedel.
This exam together with the hand-in exercises provides the grounds for grading. A total score of 18 is needed for the grade 3 or G, 28 for 4 and 38 for 5 or VG. For 3 or G one also needs at least 6 points at this exam. Solutions will be published on the course url, the day efter the exam.

1. $(2 \mathrm{p})$ Give an example of integrable random variables ξ and ξ_{1}, ξ_{2}, \ldots such that $\xi_{n} \rightarrow \xi$ in L^{2} but not a.s. (That $\xi_{n} \rightarrow \xi$ in L^{2} means that $\mathbb{E}\left[\left|\xi_{n}-\xi\right|^{2}\right] \rightarrow 0$.)

Solution. Use the same example as the example of convergence in probability but not almost surely on the exam of 121025 .
2. (4p) Let (X, \mathcal{M}, μ) be a semifinite measure space; recall that μ semifinite by definition means that whenever $\mu(E)=\infty$, then there exists $F \subset E$ such that $0<\mu(F)<\infty$. Prove that more generally, for any $0<c<\infty$, there exists a set $F \subseteq E$ such that $c<\mu(F)<\infty$.

Solution. Suppose to the contrary that $s:=\sup \{c: \exists F \subset E: c<\mu(F)<\infty\}<\infty$. Then for each $n=1,2, \ldots$, there is an $F_{n} \subset E$ with $s-1 / n<\mu\left(F_{n}\right) \leq s$. Taking $F=\bigcup_{n} F_{n}$, we get $\mu(F)=s$. However since $\mu(E \backslash F)=\infty$, there is a $G \subset E \backslash F$ such that $0<\mu(G)<\infty$, so that $F \cup G \subset E$ and $s<\mu(F \cup G)<\infty$, a contradiction to the definitionc of s.
3. (4p) Let X be an uncountable space and let \mathcal{M} be the collection of all countable subsets of X and their complements. Define the set function μ on \mathcal{M} by letting $\mu(E)=0$ for all countable E and $\mu(E)=1$ for all E whose complement is countable. Prove that \mathcal{M} is a σ-algebra and that μ is a measure. Prove also that for any \mathcal{M}-measurable function f, there is a constant a such that $f(x)=a$ for all but at most countably many $x \in X$.

Solution. That $X \in \mathcal{M}$ and \mathcal{M} is closed under complements is obvious. If $E_{n} \in \mathcal{M}, n=1,2, \ldots$, then either E_{n} is countable for all n, so that $\bigcup_{n} E_{n}$ is countable, or E_{n}^{c} is countable for some n, in which case $\left(\bigcup_{j} E_{j}\right)^{c} \subseteq E_{n}^{c}$ is also countable. This proves that \mathcal{M} is a σ-algebra.
If f is \mathcal{M}-measurable, then $\{x: f(x)<a\}$ is countable or cocountable for all a. Let $c=\sup \{a$: $\{x: f(x)<a\}$ countable $\}$. Then for any $n=1,2, \ldots,\{x: f(x)<c+1 / n\}$ is cocountable and $\{x: f(x)<c-1 / n\}$ is countable. Hence $f(x)=c$ for all but countably many x.
4. (4p) Let $f:(X, \mathcal{M}, \mu)$ be a finite measure space and f_{1}, f_{2}, \ldots a sequence of bounded measurable functions and assume that $f_{n} \rightarrow f$ uniformly. Prove that then $\int f_{n} d \mu \rightarrow \int f d \mu$. Show also that this result fails if one drops the assumption that μ be finite.
Solution. Since $f_{n} \rightarrow f$ uniformly, there is an n_{0} such that $n>n_{0} \Rightarrow \sup _{x}\left|f_{n}(x)-f(x)\right|<1$. Since μ is finite, it follows from the DCT that $\int\left|f_{n}-f\right| \rightarrow 0$. Since the f_{n} 's are bounded, $\int f_{n}$ and $\int f$ are well-defined and we get $\int f_{n} \rightarrow \int f$.
For a counterexample when μ is not finite, consider $(X, \mathcal{M}, \mu)=(\mathbb{R}, \mathcal{B}, m)$ and $f_{n}=n^{-1} \chi_{[n, \infty)}$.
5. (a) (4p) Let E be a measurable set of real numbers. One says that E har period $p(p>0)$ if $E+p=E$. Suppose that $p_{n} \rightarrow 0$ and that E has period p_{n} for all n. Prove that then $m(E)=0$ or $m(E)=\infty$. (where m as usual denotes Lebesgue measure). Hint: Pick $a \in R$, let $F(x)=m(E \cap[a, x]), x>a$ and show that

$$
F\left(x+p_{n}\right)-F\left(x-p_{n}\right)=F\left(y+p_{n}\right)-F\left(y-p_{n}\right)
$$

for $y>x>a+p_{n}$. What does this say about $F^{\prime}(x)$ if $\mu(E)>0$?
Solution. By definition $F\left(x+p_{n}\right)-F\left(x-p_{n}\right)=m\left(E \cap\left[x-p_{n}, x+p_{n}\right]\right)$ which is independent of x since E has period p_{n}. This proves the hinted equality, which in turn proves that $F^{\prime}(x)$ is constant. Hence either $m(E)$ is 0 or ∞.
(b) (2p) Let f be a Lebsgue measurable real function. Suppose that $t_{n} \rightarrow 0$ and that f has period t_{n} for all n. Prove that there is a constant c such that $f(x)=c$ for a.e. x. Hint: Apply (a) to the set $\{x: f(x)>\lambda\}$.

Solution. The set $\{x: f(x)>\lambda\}$ has period t_{n} by assumption and is therefore of measure 0 or ∞. Hence, with $c=\inf \{a: m\{x: f(x)>a\}=0\}$, we have $f(x)=c$ a.e.
6. (4p) Let $(X, \mathcal{M}, \mathbb{P})$ be a probability space and let ξ_{1}, ξ_{2}, \ldots be a sequence of independent integrable random variables, all having equal expectation: $\mathbb{E}\left[\xi_{n}\right]=v$. Let T be a stopping time, i.e. a positive integer-valued random variable such that $\{x: T(x)>n\} \in \sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$ for all n. Prove Wald's Theorem, which states that if $\mathbb{E}[T]<\infty$, then

$$
\mathbb{E}\left[\sum_{n=1}^{T} \xi_{n}\right]=v \mathbb{E}[T]
$$

Hint: Write $\sum_{1}^{T} \xi_{n}=\sum_{1}^{\infty} \xi_{n} \chi_{\{T \geq n\}}$.
Solution. Since $\{T \geq n\} \in \sigma\left(\xi_{1}, \ldots, \xi_{n-1}\right)$, we have that $\chi_{\{T \geq n\}}$ and ξ_{n} are independent, so

$$
\mathbb{E}\left[\xi_{n} \chi_{\{T \geq n\}}\right]=v \mathbb{E}\left[\chi_{\{T \geq n\}}\right]
$$

Using the hint we get

$$
\mathbb{E}\left[\sum_{n=1}^{T} \xi_{n}\right]=v \mathbb{E}\left[\sum_{1}^{\infty} \chi_{\{T \geq n\}}\right]=v \mathbb{E}[T]
$$

