Tentamen MMA110/TMV100 Integration Theory

2012-10-25 kl. 8.30-12.30

Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers
Telefonvakt: Anders Martinsson, telefon: 0703088304
Hjälpmedel: Inga hjälpmedel.
This exam together with the hand-in exercises provides the grounds for grading. A total score of 18 is needed for the grade 3 or G, 28 for 4 and 38 for 5 or VG. For 3 or G one also needs at least 6 points at this exam.

Solutions will be published on the course url, the day efter the exam.

1. (4p) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be increasing. Prove that f is $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$-measurable.

Solution. Pick $b \in \mathbb{R}$ and let $y=\sup \{x: f(x) \leq b\}$. Then either $f(y) \leq b$ and then $f^{-1}(-\infty, b]=(-\infty, y]$ since f is increasing, or $f(y)>b$ in which case $f^{-1}(-\infty, b]=$ $(-\infty, b)$ since f is increasing. Since $\mathcal{B}(\mathbb{R})$ is generated by $(-\infty, b], b \in \mathbb{R}$, the result follows.
2. (4p) Let m be the Lebesgue measure on $[0,1]$. Prove or give counterexample to the following two statements.
(a) If $m(A)>0$, then A contains an open interval.
(b) If A is such that $m\left(A^{c}\right)=0$, then A is dense.

Solution.

(a) False: let e.g. $A=\mathbb{R} \backslash \mathbb{Q}$.
(b) True: If A is not dense, then A^{c} contains an open interval and has therefore $m\left(A^{c}\right)>0$.
3. (4p) Let $f:(X, \mathcal{M}, \mu) \rightarrow \mathbb{R}$ be nonnegative and integrable and let $c=\int f d \mu>0$. Show that

$$
\lim _{n} \int n \log \left(1+(f / n)^{a}\right) d \mu= \begin{cases}\infty, & 0<a<1 \\ c, & a=1 \\ 0, & 1<a<\infty\end{cases}
$$

Solution. Write g_{n} for the integrated functions. For the cases where $a \geq 1$, we use DCT with $a f$ as dominating function; this is obviously an integrable function (which integrates to $a c$), but it is not equally obvious that it in fact dominates the g_{n} 's. However for x such that $f(x) \geq n$,

$$
\left.n \log \left(1+(f(x) / n)^{a}\right) \leq n \log (1+f(x) / n)\right)^{a}=a n \log (1+f(x) / n) \leq a f(x)
$$

where the first inequality follows since $a \geq 1$ and the last one since $\log (1+b) \leq b$ for all nonnegative b. For x with $f(x)<n$,

$$
n \log \left(1+(f(x) / n)^{a}\right) \leq n \log (1+f(x) / n) \leq f(x) \leq a f(x)
$$

where the first and last inequalities follow since $a \geq 1$. For $a=1$, we have

$$
\lim _{n} g_{n}=f
$$

so the DCT gives $\lim _{n} \int g_{n}=\int f=c$. For $a>1, \lim _{n} g_{n}=0$, so the DCT gives $\lim _{n} \int g_{n}=$ 0 . For $a<1, g_{n} \rightarrow \infty$, so by Fatou's Lemma, $\lim _{\inf }^{n} \int g_{n}=\infty$.
4. (4p) A stronger version of the Dominated Convergence Theorem for finite measures. Let (X, \mathcal{M}, μ) be a finite measure space and f and f_{1}, f_{2}, \ldots integrable functions. One says that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly integrable if $\int_{\left\{\left|f_{n}\right|>K\right\}}\left|f_{n}\right| d \mu \rightarrow 0$ as $K \rightarrow \infty$ uniformly in n. Say that $\left\{f_{n}\right\}$ is dominated if there is an integrable function g such that $\left|f_{n}\right| \leq g$ for all n. Show that any dominated sequence of functions is uniformly integrable and find an example that shows that the converse does not hold. Prove finally that if $\left\{f_{n}\right\}$ is uniformly integrable and $f_{n} \rightarrow f$ a.e., then $\lim _{n} \int f_{n} d \mu=\int f d \mu$.
Solution. If $\left\{f_{n}\right\}$ is dominated, then $\int_{\left\{\left|f_{n}\right|>K\right\}} f_{n} \leq \int_{\{g \geq K\}} g \rightarrow 0$ as $K \rightarrow \infty$. If $f_{n}=$ $n \chi_{\left[0,1 / n^{2}\right]}$, defined on $([0,1], \mathcal{B}[0,1], m)$, then $\left\{f_{n}\right\}$ is UI but not dominated.
If $\left\{f_{n}\right\}$ is UI the note first that f must be integrable, since $\sup _{n} \int\left|f_{n}\right| \leq 1+K \mu(X)<\infty$ for K chosen so that $\int_{\left\{\left|f_{n}\right|>K\right\}}\left|f_{n}\right| \leq 1$ for all n. Hence $\int|f| \leq 1+K \mu(X)$ by Fatou's Lemma.
Now pick K so large that $\int_{\left\{\left|f_{n}\right|>K\right\}} f_{n}<\epsilon$ for all n and $\int_{\{|f|>K\}} f<\epsilon$. By the DCT with the constant K as dominating function (which works since μ is finite), we have

$$
\limsup _{n}\left|\int f_{n}-\int f\right| \leq \epsilon+\limsup _{n}\left|\int_{\left\{\left|f_{n}\right| \leq K\right\}} f_{n}-\int_{\{|f| \leq K\}} f\right|=\epsilon .
$$

5. (4p) Let (X, \mathcal{M}, μ) be a σ-finite measure space and let $f_{n}, n=1,2, \ldots$ and f be integrable Borel functions on X. One says that $f_{n} \rightarrow f$ in measure if for each $\epsilon>0, \lim _{n} \mu\{x \in X$: $\left.\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=0$ as $n \rightarrow \infty$.
(a) Show that $f_{n} \rightarrow f$ in measure whenever $f_{n} \rightarrow f$ a.e. and μ is finite. Show by counterexample that this implication does not extend to σ-finite measures.
(b) Show by counterexample that $f_{n} \rightarrow f$ in measure does not imply that $f_{n} \rightarrow f$ a.e. Show, on the other hand, that if $f_{n} \rightarrow f$ in measure, then there exists a subsequence $\left\{f_{n_{k}}\right\}$ such that $f_{n_{k}} \rightarrow f$ a.e.

Solution. For (a), suppose $f_{n} \rightarrow f$ a.e. but $f_{n} \rightarrow f$ in measure fails. Then for some $\epsilon>0$, $\mu\left\{\left|f_{n}-f\right|>\epsilon\right\} \nrightarrow 0$. However since $f_{n} \rightarrow f$ a.e., $\mu\left(\lim \sup _{n}\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)=0$, by continuity of measures (since μ is finite), a contradiction. For the counterexample: let $(X, \mathcal{M}, \mu)=(\mathbb{R}, \mathcal{B}, m)$ and let $f_{n}=\chi_{[n, \infty)}$.
For the counterexample in (b), let $X=[0,1]$ and $\mu=m$. Let $f_{1}=\chi_{(0,1 / 2)}, f_{2}=\chi_{(1 / 2,1)}$, $f_{3}=\chi_{(0,1 / 4)}, \ldots, f_{6}=\chi_{(3 / 4,1)}, f_{7}=\chi_{(0,1 / 8)}, \ldots$. For the last assertion, let for $k=1,2, \ldots$, n_{k} be such that $n \geq n_{k} \Rightarrow \mu\left\{\left|f_{n}-f\right|>1 / k\right\}<2^{-k}$. Let $E_{k}=\left\{x:\left|f_{n_{k}}(x)-f(x)\right|>1 / k\right\}$ and $F_{j}=\bigcup_{j}^{\infty} E_{k}$. Then $\mu\left(F_{1}\right) \leq 1$ so by Borel-Cantelli, $\mu\left(\limsup _{k} E_{k}\right)=0$. Hence for a.e. $x, x \in E_{k}$ for only finitely many k. However, for such $x, f_{n_{k}}(x) \rightarrow f$.
6. (4p) Find an example of two measures μ and ν on the same measurable space (X, \mathcal{M}) such that $\nu \ll \mu$, but no measurable function f such that $\nu(E)=\int_{E} f d \mu, E \in \mathcal{M}$ exists.

Solution. Let $(X, \mathcal{M})=(\mathbb{R}, \mathcal{B})$ and let ν be Lebesgue measure and μ counting measure. Then obviously $\nu \ll \mu$. Assume there was a measurable function f such that $\int_{E} f d \mu=\nu(E)$ for all $E \in \mathcal{B}$. Now taking $E=\{x\}$ gives that we must have $f(x)=0$ since $\mu\{x\}=1$ and $\nu\{x\}=0$. This holds for all $x \in \mathbb{R}$, so f is identically 0 , a contradiction.

