SOLUTIONS
 INTEGRATION THEORY (7.5 hp)
 (GU[MMA110], $\mathbf{C T H}[t m v 100])$

October 20, 2011, morning, v.
No aids.
Questions on the exam: Richard Lärkäng 0703-088304
Each problem is worth 3 points.

1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a Lebesgue integrable function and define

$$
g(x)=\int_{-\infty}^{\infty} e^{-|y|} f(x-y) d y \text { if } x \in \mathbf{R} .
$$

Prove that g is a continuous function of bounded variation.

Solution. Put $h(x)=e^{-|x|}$ if $x \in \mathbf{R}$ so that

$$
g(x)=\int_{-\infty}^{\infty} h(x-y) f(y) d y
$$

We first prove that the function h is continuous. To this end suppose $\left(a_{n}\right)_{n \in \mathbf{N}_{+}}$is a sequence of real numbers which converges to a real number a. Then

$$
\left.\left.\mid h\left(a_{n}-y\right) f(y)\right)|\in| f(y)\right) \mid \text { if } n \in \mathbf{N}_{+} \text {and } y \in \mathbf{R}
$$

and since $f \in \mathcal{L}^{1}(m)$ by dominated convergence,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} g\left(a_{n}\right)=\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} h\left(a_{n}-y\right) f(y) d y= \\
\int_{-\infty}^{\infty} h(a-y) f(y) d y=g(a)
\end{gathered}
$$

and it follows that g is continuous.
We next prove that the function h is of bounded variation. Recall that the total variation function $T_{h}(x)$ of h at the point x is the supremum of all sums of the type

$$
\sum_{i=1}^{n}\left|h\left(x_{i}\right)-h\left(x_{i-1}\right)\right|
$$

where

$$
-\infty<x_{0}<x_{1}<\ldots<x_{n}=x<\infty .
$$

We claim that h is the difference of two bounded increasing functions. Setting

$$
\psi(x)=e^{\min (0, x)}
$$

and observing that

$$
h(x)=\psi(x)+\psi(-x)-1
$$

the claim above is obvious and

$$
C==_{d e f} \sup T_{h}<\infty
$$

Moreover, if $-\infty<x_{0}<x_{1}<\ldots<x_{n}<\infty$,

$$
\begin{gathered}
\sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|= \\
\sum_{i=1}^{n}\left|\int_{-\infty}^{\infty} h\left(x_{i}-y\right) f(y) d y-\int_{-\infty}^{\infty} h\left(x_{i-1}-y\right) f(y) d y\right| \\
\leq \sum_{i=1}^{n} \int_{-\infty}^{\infty}\left|h\left(x_{i}-y\right)-h\left(x_{i-1}-y\right)\right||f(y)| d y \\
\int_{-\infty}^{\infty}\left(\sum_{i=1}^{n}\left|h\left(x_{i}-y\right)-h\left(x_{i-1}-y\right)\right|\right)|f(y)| d y \\
\leq \int_{-\infty}^{\infty} C|f(y)| d y=C \int_{-\infty}^{\infty}|f(y)| d y<\infty
\end{gathered}
$$

Hence g is of bounded variation.
2. Let γ_{n} be the standard Gaussian measure on \mathbf{R}^{n}, that is

$$
d \gamma_{n}(x)=\exp \left(-\frac{|x|^{2}}{2}\right) \frac{d x}{\sqrt{2 \pi}^{n}}
$$

where $|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$. Find

$$
\lim _{k \rightarrow \infty} \int_{\mathbf{R}^{n}} \prod_{i=1}^{n}\left(1+\frac{x_{i}+x_{i}^{2}}{4 k}\right)^{k} d \gamma_{n}(x)
$$

Solution. Since $e^{t} \geq 1+t$ for every real t we have for each fixed $i \in\{1, \ldots, n\}$,

$$
1+\frac{x_{i}+x_{i}^{2}}{4 k} \leq e^{\frac{x_{i}+x_{i}^{2}}{4 k}}
$$

Moreover, if $k \in \mathbf{N}_{+}$, then

$$
1+\frac{x_{i}+x_{i}^{2}}{4 k}=\frac{1}{4 k}\left(\left(x_{i}+\frac{1}{2}\right)^{2}+4 k-\frac{1}{4}\right) \geq 0
$$

and we conclude that

$$
\left(1+\frac{x_{i}+x_{i}^{2}}{4 k}\right)^{k} \leq e^{\frac{x_{i}+x_{i}^{2}}{4}}
$$

Thus, for any $k \in \mathbf{N}_{+}$,

$$
0 \leq f_{k}(x)=_{\text {def }} \prod_{i=1}^{n}\left(1+\frac{x_{i}+x_{i}^{2}}{4 k}\right)^{k} \leq \prod_{i=1}^{n} e^{\frac{x_{i}+x_{i}^{2}}{4}}={ }_{\text {def }} g(x)
$$

where $g \in \mathcal{L}^{1}\left(\gamma_{n}\right)$ since

$$
\begin{aligned}
\int_{\mathbf{R}^{n}} g(x) d \gamma_{n}(x)= & \int_{\mathbf{R}^{n}} \prod_{i=1}^{n} e^{\frac{x_{i}-x_{i}^{2}}{4}} \frac{d x}{\sqrt{2 \pi}}=\{\text { Tonelli's Theorem }\}= \\
& \prod_{i=1}^{n} \int_{\mathbf{R}} e^{\frac{x_{i}-x_{i}^{2}}{4}} \frac{d x_{i}}{\sqrt{2 \pi}}=\sqrt{2}^{n} e^{\frac{n}{16}}
\end{aligned}
$$

Moreover,

$$
\lim _{k \rightarrow \infty} f_{k}(x)=g(x)
$$

and by dominated convergence we get

$$
\lim _{k \rightarrow \infty} \int_{\mathbf{R}^{n}} \prod_{i=1}^{n}\left(1+\frac{x_{i}+x_{i}^{2}}{4 k}\right)^{k} d \gamma_{n}(x)=\int_{\mathbf{R}^{n}} g(x) d \gamma_{n}(x)=\sqrt{2}^{n} e^{\frac{n}{16}}
$$

3. Suppose $\Sigma_{1}^{\infty} a_{n}$ is a positive convergent series and let E be the set of all $x \in[0,1]$ such that

$$
\min _{p \in\{0, \ldots, n\}}\left|x-\frac{p}{n}\right|<\frac{a_{n}}{n}
$$

for infinitely many $n \in \mathbf{N}_{+}$. Prove that E is a Lebesgue null set.

Solution. For fixed $n \in \mathbf{N}_{+}$, let E_{n} be the set of all $x \in[0,1]$ such that

$$
\min _{p \in \mathbf{N}_{+}}\left|x-\frac{p}{n}\right|<\frac{a_{n}}{n}
$$

Then if $B(x, r)=] x-r, x+r[, x \in[0,1], r>0$, we have

$$
E_{n} \subseteq \bigcup_{p=0}^{n} B\left(\frac{p}{n}, \frac{a_{n}}{n}\right)
$$

and

$$
m\left(E_{n}\right) \leq(n+1) \frac{2 a_{n}}{n} \leq 4 a_{n} .
$$

Hence

$$
\sum_{1}^{\infty} m\left(E_{n}\right)<\infty
$$

and by the Beppo Levi theorem

$$
\int_{0}^{1} \sum_{1}^{\infty} \chi_{E_{n}} d m<\infty
$$

Accordingly from this the set

$$
F=\left\{x \in[0,1] ; \quad \sum_{1}^{\infty} \chi_{E_{n}}(x)<\infty\right\}
$$

is of Lebesgue measure 1 . Since $E \subseteq[0,1] \backslash F$ we have $m(E)=0$.
4. Suppose (X, \mathcal{M}, μ) is a positive measure space. (a) If $f: X \rightarrow \mathbf{R}$ is measurable and $\mu(|f|>\varepsilon)=0$ for every $\varepsilon>0$, show that $f=0$ a.e. $[\mu]$. (b) If $f_{n} \rightarrow f$ in μ-measure and $f_{n} \rightarrow g$ in μ-measure, show that $f=g$ a.e. [μ]. (c) If $f_{n} \rightarrow f$ in $L^{1}(\mu)$, show that $f_{n} \rightarrow f$ in μ-measure.
5. Suppose (X, \mathcal{M}, μ) is a positive measure space and $f_{n}: X \rightarrow[0, \infty], n \in$ \mathbf{N}_{+}, a sequence of measurable functions such that $f_{n} \leq f_{n+1}, n \in \mathbf{N}_{+}$, and

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \text { if } x \in X
$$

Prove that f is measurable and

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu .
$$

