Solutions:
 INTEGRATION THEORY (7.5 hp)
 (GU[MMA110], $\mathbf{C T H}[t m v 100])$

August 15, 2011, morning, v.
No aids.
Questions on the exam: Adam Andersson, 0703-08 8304
Each problem is worth 3 points.

Notation: Lebesgue measure on \mathbf{R}^{d} is denoted by m_{d}.

1. Compute

$$
\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{\left(1-\frac{x}{n}\right)^{n}}{\sqrt{x}} d x
$$

Solution. Suppose $n \in \mathbf{N}_{+}$. Since $1+t \leq e^{t}$ for every real t,

$$
\chi_{[0, n]}(x)\left(1-\frac{x}{n}\right)^{n} \leq e^{-x} \text { if } x \geq 0
$$

From this

$$
f_{n}(x)=_{d e f} \chi_{[0, n]}(x) \frac{\left(1-\frac{x}{n}\right)^{n}}{\sqrt{x}} \leq \frac{e^{-x}}{\sqrt{x}}, x \geq 0
$$

and, in addition,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\frac{e^{-x}}{\sqrt{x}} .
$$

Here $\frac{e^{-x}}{\sqrt{x}} \in L^{1}\left(m_{1}\right.$ on $\left[0, \infty[)\right.$ since $\frac{e^{-x}}{\sqrt{x}} \geq 0$ and

$$
\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x=2 \int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Moreover $f_{n} \geq 0$ for every $n \in \mathbf{N}_{+}$and by using dominated convergence we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{\left(1-\frac{x}{n}\right)^{n}}{\sqrt{x}} d x & =\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x= \\
\int_{0}^{\infty} \lim _{n \rightarrow \infty} f_{n}(x) d x & =\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x=\sqrt{\pi}
\end{aligned}
$$

2. Let (X, \mathcal{M}) be a measurable space and suppose $\mu: \mathcal{M} \rightarrow]-\infty, \infty]$ and $\nu: \mathcal{M} \rightarrow]-\infty, \infty]$ are signed measures. Prove that

$$
(\mu+\nu)^{+} \leq \mu^{+}+\nu^{+} .
$$

Solution. If θ is a signed measure defined on the σ-algebra \mathcal{M}, let $P_{\theta}, N_{\theta} \in \mathcal{M}$ be disjoint with $P_{\theta} \cup N_{\theta}=X$ and such that θ is positive on P_{θ} and negative on N_{θ}. Then if $A \in \mathcal{M}$,

$$
\begin{gathered}
(\mu+\nu)^{+}(A)=(\mu+\nu)\left(A \cap P_{\mu+\nu}\right)= \\
\mu\left(A \cap P_{\mu+\nu}\right)+\nu\left(A \cap P_{\mu+\nu}\right) \leq \\
\mu\left(A \cap P_{\mu+\nu} \cap P_{\mu}\right)+\nu\left(A \cap P_{\mu+\nu} \cap P_{\nu}\right) \leq \\
\mu\left(A \cap P_{\mu}\right)+\nu\left(A \cap P_{\nu}\right)=\mu^{+}(A)+\nu^{+}(A) .
\end{gathered}
$$

3. Suppose $f \in L^{1}\left(m_{2}\right)$. Show that $\lim _{n \rightarrow \infty} f(n x)=0$ for m_{2}-almost all $x \in \mathbf{R}^{2}$.

Solution. Writing $d m_{2}=d x$, we have

$$
\int_{\mathbf{R}^{2}}|f(n x)| d x=\frac{1}{n^{2}} \int_{\mathbf{R}^{2}}|f(x)| d x
$$

and, hence, by the Beppo Levi theorem

$$
\begin{gathered}
\int_{\mathbf{R}^{2}} \sum_{n=1}^{\infty}|f(n x)| d x=\sum_{n=1}^{\infty} \int_{\mathbf{R}^{2}}|f(n x)| d x= \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{\mathbf{R}^{2}}|f(x)| d x<\infty .
\end{gathered}
$$

From this it follows that

$$
\sum_{n=1}^{\infty}|f(n x)|<\infty \text { a.e }\left[m_{2}\right]
$$

and the series

$$
\sum_{n=1}^{\infty} f(n x)
$$

converges for m_{2}-almost all $x \in \mathbf{R}^{2}$. Since the general term a_{n} in a convergent series $\Sigma_{1}^{\infty} a_{n}$ converges to zero as $n \rightarrow \infty$ we are done.
4. Suppose (X, \mathcal{M}, μ) is a positive measure space and $w: X \rightarrow[0, \infty]$ a measurable function. Define

$$
\nu(A)=\int_{A} w d \mu, A \in \mathcal{M}
$$

Prove that ν is a positive measure and

$$
\int_{X} f d \nu=\int_{X} f w d \mu
$$

for every measurable function $f: X \rightarrow[0, \infty]$.
5. Suppose θ is an outer measure on X and let $\mathcal{M}(\theta)$ be the set of all $A \subseteq X$ such that

$$
\theta(E)=\theta(E \cap A)+\theta\left(E \cap A^{c}\right) \text { for all } E \subseteq X
$$

Prove that $\mathcal{M}(\theta)$ is a σ-algebra and that the restriction of θ to $\mathcal{M}(\theta)$ is a complete measure.

