Solutions:
 INTEGRATION THEORY (7.5 hp)
 (GU[MMA110], $\mathbf{C T H}[t m v 100])$

January 08, 2011, morning, v.
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. Let (X, \mathcal{M}, μ) be a positive measure space and $f_{n}: X \rightarrow \mathbf{R}, n \in \mathbf{N}_{+}$, a sequence of measurable functions such that

$$
\limsup _{n \rightarrow \infty} n^{2} \mu\left(\left|f_{n}\right| \geq n^{-2}\right)<\infty
$$

Prove that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges for μ-almost all $x \in X$.

Solution. There exist a $C \in[0, \infty[$ such that

$$
\mu\left(\left|f_{n}\right| \geq n^{-2}\right) \leq C n^{-2} \text { if } n \in \mathbf{N}_{+} .
$$

Hence

$$
\sum_{n=1}^{\infty} \int_{X} \chi_{\left\{\left|f_{n}\right| \geq n^{-2}\right\}} d \mu<\infty
$$

and the Beppo Levi theorem yields

$$
\int_{X} \sum_{n=1}^{\infty} \chi_{\left\{\left|f_{n}\right| \geq n^{-2}\right\}} d \mu<\infty .
$$

Thus

$$
\sum_{n=1}^{\infty} \chi_{\left\{\left|f_{n}\right| \geq n^{-2}\right\}}(x)<\infty
$$

for μ-almost all $x \in X$ and it follows that there exists a function $N: X \rightarrow \mathbf{N}_{+}$ such that

$$
\left|f_{n}(x)\right|<n^{-2} \text { if } n \geq N(x)
$$

for μ-almost all $x \in X$. Accordingly, from this the series $\sum_{n=1}^{\infty}\left|f_{n}(x)\right|$ converges for μ-almost all $x \in X$. Finally, since an absolutely convergent real series converges, the series $\sum_{n=1}^{\infty} f_{n}(x)$ must converge for μ-almost all $x \in X$.

2. Compute the n-dimensional Lebesgue integral

$$
\int_{|x|<1} \ln (1-|x|) d x
$$

where $|x|$ denotes the Euclidean norm of the vector $x \in \mathbf{R}^{n}$. (Hint: $\left.\sigma\left(S^{n-1}\right)=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}.\right)$

Solution. We have

$$
\begin{gathered}
\int_{|x|<1} \ln (1-|x|) d x=\sigma\left(S^{n-1}\right) \int_{0}^{1} r^{n-1} \ln (1-r) d r \\
=-\sigma\left(S^{n-1}\right) \int_{0}^{1} \sum_{k=1}^{\infty} \frac{r^{k+n-1}}{k} d r
\end{gathered}
$$

Moreover, the Beppo Levi theorem implies that

$$
\begin{gathered}
\int_{0}^{1} \sum_{k=1}^{\infty} \frac{r^{k+n-1}}{k} d r=\sum_{k=1}^{\infty} \int_{0}^{1} \frac{r^{k+n-1}}{k} d r \\
=\sum_{k=1}^{\infty} \frac{1}{k(k+n)}=\frac{1}{n} \sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+n}\right)=\frac{1}{n} \sum_{k=1}^{n} \frac{1}{k} .
\end{gathered}
$$

Thus

$$
\int_{|x|<1} \ln (1-|x|) d x=-\frac{2 \pi^{n / 2}}{n \Gamma(n / 2)} \sum_{k=1}^{n} \frac{1}{k} .
$$

3. The set $A \subseteq \mathbf{R}$ has positive Lebesgue measure and

$$
A+\mathbf{Q}=\{x+y ; x \in A \text { and } y \in \mathbf{Q}\}
$$

where \mathbf{Q} stands for the set of all rational numbers. Show that the set

$$
\mathbf{R} \backslash(A+\mathbf{Q})
$$

is a Lebesgue null set. (Hint: The function $m(A \Delta(A-x)), x \in \mathbf{R}$, is continuous.)

Solution. Without loss of generality we may assume A is compact. Suppose $m(\mathbf{R} \backslash(A+\mathbf{Q}))>0$ and pick a compact set $K \subseteq \mathbf{R} \backslash(A+\mathbf{Q})$ of positive Lebesgue measure. We first claim that

$$
m(K \cap(A+x))>0 \text { for some } x \in \mathbf{R} .
$$

In fact, if not,

$$
\int_{\mathbf{R}} \chi_{K}(y) \chi_{A}(y-x) d y=0 \text { if } x \in \mathbf{R}
$$

and, hence,

$$
\int_{\mathbf{R}} e^{-x^{2}}\left(\int_{\mathbf{R}} \chi_{K}(y) \chi_{A}(y-x) d y\right) d x=0 .
$$

Now by the Tonelli theorem

$$
\begin{aligned}
0 & =\int_{\mathbf{R}} \chi_{K}(y)\left(\int_{\mathbf{R}} e^{-x^{2}} \chi_{A}(y-x) d x\right) d y \\
& =\int_{\mathbf{R}} \chi_{K}(y)\left(\int_{\mathbf{R}} e^{-(x-y)^{2}} \chi_{A}(x) d x\right) d y
\end{aligned}
$$

and as

$$
\int_{\mathbf{R}} e^{-(x-y)^{2}} \chi_{A}(x) d x>0 \text { if } y \in \mathbf{R}
$$

it follows that $\chi_{K}=0$ a.e. $[\mathrm{m}]$, which is a contradiction. Accordingly from this, there is an $x_{0} \in \mathbf{R}$ such that

$$
m\left(K \cap\left(A+x_{0}\right)\right)>0 .
$$

But, if $q \in \mathbf{Q}$,

$$
\begin{gathered}
\left|m\left(K \cap\left(A+x_{0}\right)\right)-m(K \cap(A+q))\right| \\
=\left|\int_{K}\left(\chi_{A+x_{0}}-\chi_{A+q}\right) d m\right| \leq \int_{\mathbf{R}}\left|\chi_{A+x_{0}}-\chi_{A+q}\right| d m \\
=m\left(\left(A+x_{0}\right) \Delta(A+q)\right)=m\left(A \Delta\left(A+q-x_{0}\right)\right) .
\end{gathered}
$$

Hence $m(K \cap(A+q))>0$ if q is sufficiently close to x_{0} and therefore $K \cap(A+q) \neq \phi$ if q is sufficiently close to x_{0}, which contradicts the relation $K \subseteq \mathbf{R} \backslash(A+q)$. From this contradiction we conclude that

$$
m(\mathbf{R} \backslash(A+\mathbf{Q}))=0
$$

4. Let (X, \mathcal{M}, μ) be a positive measure space. (a) Suppose $f_{n} \rightarrow f$ in measure and $f_{n} \rightarrow g$ in measure. Show that $f=g$ a.e. [μ]. (b) Suppose $f_{n} \rightarrow f$ in L^{1}. Show that $f_{n} \rightarrow f$ in measure.
5. Suppose the function $F: \mathbf{R} \rightarrow \mathbf{R}$ is of bounded variation. (a) Define the total variation T_{F} of F. (b) Show that the functions $T_{F}+F$ and $T_{F}-F$ are increasing. (c) Show that T_{F} is right continuous if F is.
