Solutions:
 INTEGRATION THEORY (7.5 hp)
 (GU[MMA110], $\mathbf{C T H}[t m v 100])$

October 21, 2010, morning, H.
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. Suppose

$$
\mu(A)=\int_{A}|x|^{n} e^{-|x|^{n}} d x, A \in \mathcal{B}\left(\mathbf{R}^{n}\right)
$$

where $|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$. Compute the limit

$$
\lim _{\rho \rightarrow \infty} \rho^{-n} \ln \mu\left(\left\{x \in \mathbf{R}^{n} ;|x| \geq \rho\right\}\right)
$$

Solution. We have

$$
\begin{gathered}
\mu\left(\left\{x \in \mathbf{R}^{n} ;|x| \geq \rho\right\}\right)=\int_{\mathbf{R}^{n}} \chi_{[\rho, \infty[}(|x|)|x|^{n} e^{-|x|^{n}} d x \\
=\sigma_{n-1}\left(S^{n-1}\right) \int_{\rho}^{\infty} r^{2 n-1} e^{-r^{n}} d r=\frac{1}{n} \sigma_{n-1}\left(S^{n-1}\right) \int_{\rho^{n}}^{\infty} t e^{-t} d t \\
=\frac{1}{n} \sigma_{n-1}\left(S^{n-1}\right)\left(\rho^{n}+1\right) e^{-\rho^{n}} .
\end{gathered}
$$

Hence

$$
\lim _{\rho \rightarrow \infty} \rho^{-n} \ln \mu\left(\left\{x \in \mathbf{R}^{n} ;|x| \geq \rho\right\}\right)=-1
$$

2. Let μ be a σ-finite positive measure on (X, \mathcal{M}) and $\left(f_{n}\right)_{n \in \mathbf{N}}$ a sequence of measurable functions which converges in μ-measure to a measurable function f. Moreover, suppose ν is a finite positive measure on (X, \mathcal{M}) such that $\nu \ll \mu$. Prove that $f_{n} \rightarrow f$ in ν-measure.

Solution. The Radon-Nikodym theorem implies that $d \nu=g d \mu$ for an appropriate non-negative $g \in L^{1}(\mu)$.

Now, if $\varepsilon>0$ is given and $k \in \mathbf{N}_{+}$,

$$
\begin{gathered}
0 \leq \nu\left(\left|f_{n}-f\right|>\varepsilon\right)=\int_{X} \chi_{] \varepsilon, \infty[}\left(\left|f_{n}-f\right|\right) g d \mu \\
=\int_{g \leq k} \chi_{] \varepsilon, \infty[}\left(\left|f_{n}-f\right|\right) g d \mu+\int_{g>k} \chi_{] \varepsilon, \infty[}\left(\left|f_{n}-f\right|\right) g d \mu \\
\leq k \int_{X} \chi_{] \varepsilon, \infty[}\left(\left|f_{n}-f\right|\right) d \mu+\int_{X} \chi_{] k, \infty[}(g) g d \mu \\
=k \mu\left(\left|f_{n}-f\right|>\varepsilon\right)+\int_{X} \chi_{] k, \infty[}(g) g d \mu .
\end{gathered}
$$

Thus

$$
0 \leq \lim \sup _{n \rightarrow \infty} \nu\left(\left|f_{n}-f\right|>\varepsilon\right) \leq \int_{X} \chi_{] k, \infty[}(g) g d \mu .
$$

Moreover, $0 \leq \chi_{] k, \infty[}(g) g \leq g \in L^{1}(\mu)$ and $\chi_{] k, \infty[}(g) g \rightarrow 0$ a.e. $[\mu]$ as $k \rightarrow \infty$. Hence, by the dominated convergence theorem,

$$
\lim _{k \rightarrow \infty} \int_{X} \chi_{] k, \infty[}(g) g d \mu=0
$$

and it follows that

$$
\lim _{n \rightarrow \infty} \nu\left(\left|f_{n}-f\right|>\varepsilon\right)=0
$$

Alternative solution. Choose $\varepsilon_{0}, \varepsilon>0$. Since $\nu \ll \mu$ there is a postive number δ such that

$$
(E \in \mathcal{M} \text { and } \mu(E)<\delta) \Rightarrow \nu(E)<\varepsilon_{0}
$$

(Folland, Theorem 3.5). Moreover, since the sequence $\left(f_{n}\right)_{n \in \mathbf{N}}$ converges in μ-measure, there is a postive integer N such that

$$
n \geq N \Rightarrow \mu\left(\left|f_{n}-f\right|>\varepsilon\right)<\delta
$$

From the above we conclude that

$$
n \geq N \Rightarrow \nu\left(\left|f_{n}-f\right|>\varepsilon\right)<\varepsilon_{0}
$$

Thus

$$
\lim _{n \rightarrow \infty} \nu\left(\left|f_{n}-f\right|>\varepsilon\right)=0
$$

Note that this solution does not use that μ is σ-finite.
3. Suppose $f:[0,1] \rightarrow \mathbf{R}$ is a continuous function. Find

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} f(x) e^{-(n \min (x, 1-x))^{2}} d x
$$

Solution. We have

$$
\begin{aligned}
& n \int_{0}^{\frac{1}{2}} f(x) e^{-(n \min (x, 1-x))^{2}} d x=n \int_{0}^{\frac{1}{2}} f(x) e^{-(n x)^{2}} d x \\
& \quad=\int_{0}^{\frac{n}{2}} f\left(\frac{t}{n}\right) e^{-t^{2}} d t=\int_{0}^{\infty} \chi_{\left[0, \frac{n}{2}\right]}(t) f\left(\frac{t}{n}\right) e^{-t^{2}} d t
\end{aligned}
$$

Here for each $n \in \mathbf{N}$, the function

$$
g_{n}(t)=\chi_{\left[0, \frac{n}{2}\right]}(t) f\left(\frac{t}{n}\right) e^{-t^{2}}, t \geq 0
$$

is non-negative and bounded by the function

$$
(\max |f|) e^{-t^{2}}, t \geq 0
$$

which is Lebesgue integrable on $[0, \infty[$. Since

$$
\lim _{n \rightarrow \infty} g_{n}(t)=f(0) e^{-t^{2}}, t \geq 0
$$

the dominated convergence theorem implies that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{\frac{1}{2}} f(x) e^{-(n \min (x, 1-x))^{2}} d x=f(0) \int_{0}^{\infty} e^{-t^{2}} d t=f(0) \frac{\sqrt{\pi}}{2}
$$

Furthermore,

$$
n \int_{\frac{1}{2}}^{1} f(x) e^{-(n \min (x, 1-x))^{2}} d x=n \int_{0}^{\frac{1}{2}} f(1-x) e^{-(n \min (x, 1-x))^{2}} d x
$$

and it follows from the above that

$$
\lim _{n \rightarrow \infty} n \int_{\frac{1}{2}}^{1} f(x) e^{-(n \min (x, 1-x))^{2}} d x=f(1) \frac{\sqrt{\pi}}{2}
$$

Thus

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} f(x) e^{-(n \min (x, 1-x))^{2}} d x=\frac{\sqrt{\pi}}{2}(f(0)+f(1))
$$

4. Suppose $f:] a, b\left[\times X \rightarrow \mathbf{R}\right.$ is a function such that $f(t, \cdot) \in L^{1}(\mu)$ for each $t \in] a, b\left[\right.$. Moreover, assume $\frac{\partial f}{\partial t}$ exists and there is a $g \in L^{1}(\mu)$ such that

$$
\left.\left|\frac{\partial f}{\partial t}(t, x)\right| \leq g(x) \text { for all }(t, x) \in\right] a, b[\times X
$$

Prove that the function

$$
\left.F(t)=\int_{X} f(t, x) d \mu(x), t \in\right] a, b[
$$

is differentiable and

$$
\left.F^{\prime}(t)=\int_{X} \frac{\partial f}{\partial t}(t, x) d \mu(x) \text { if } t \in\right] a, b[
$$

5. (a) Suppose $f: \mathbf{R}^{n} \rightarrow[0, \infty]$ and that $\left\{x \in \mathbf{R}^{n} ; f(x)>\alpha\right\}$ is an m_{n}-null set for every $\alpha>0$. Prove that $f(x)=0$ a.e. $\left[m_{n}\right]$. (b) Suppose $f \in L_{l o c}^{1}\left(m_{n}\right)$ and define

$$
\left.A_{r} f(x)=\frac{1}{m_{n}(B(x, r))} \int_{B(x, r)} f(y) d y,(x, r) \in \mathbf{R}^{n} \times\right] 0, \infty[
$$

where $B(x, r)$ is the open ball of centre $x \in \mathbf{R}^{n}$ and radius $r>0$ (with respect to the Euclidean metric $d(x, y)=|x-y|)$.

Use the maximal theorem to prove that

$$
\lim _{r \rightarrow 0+} A_{r} f(x)=f(x) \text { a.e. }\left[m_{n}\right] .
$$

