Solutions: INTEGRATION THEORY (7.5 hp) (GU[MMA110],CTH[TMV100]) August 16, 2010, morning, V. No aids. Examiner: Christer Borell, telephone number 0705292322 Each problem is worth 3 points.

1. Let (X, \mathcal{M}, μ) be a positive measure space, $\{E_k\}_{k=1}^n$ a collection of measurable sets, and $\{c_k\}_{k=1}^n$ a collection of positive real numbers. Set

$$\nu(A) = \sum_{k=1}^{n} c_k \mu(A \cap E_k), \ A \in \mathcal{M}.$$

Show that ν is absolutely continuous with respect to μ and find its Radon-Nikodym derivative $\frac{d\nu}{d\mu}$.

Solution. If $A \in \mathcal{M}$ and $\mu(A) = 0$ we have $\mu(A \cap E_k) = 0$ for k = 1, ..., nand it follows that $\nu(A) = 0$. Hence $\nu \ll \mu$. Moreover, if $A \in \mathcal{M}$,

$$\nu(A) = \sum_{k=1}^{n} c_k \int_A \chi_{E_k} d\mu = \int_A \sum_{k=1}^{n} c_k \chi_{E_k} d\mu$$

and thus

$$\frac{d\nu}{d\mu} = \sum_{k=1}^{n} c_k \chi_{E_k}.$$

2. Suppose a > 1. Show that

$$\int_0^\infty \frac{x^{a-1}}{e^{2x} - 1} dx = 2^{-a} \Gamma(a) \varsigma(a)$$

where

$$\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt$$

$$\varsigma(a) = \sum_{n=1}^{\infty} n^{-a}.$$

Solution. We have

$$I =_{def} \int_0^\infty \frac{x^{a-1}}{e^{2x} - 1} dx = 2^{-a} \int_0^\infty \frac{x^{a-1}e^{-x}}{1 - e^{-x}} dx$$
$$= 2^{-a} \int_0^\infty x^{a-1} e^{-x} \sum_{n=0}^\infty e^{-nx} dx.$$

Thus by monotone convergence

$$I = 2^{-a} \sum_{n=0}^{\infty} \int_0^\infty x^{a-1} e^{-x} e^{-nx} dx$$
$$= 2^{-a} \sum_{n=0}^\infty \frac{1}{(n+1)^a} \int_0^\infty y^{a-1} e^{-y} dy = 2^{-a} \Gamma(a) \sum_{n=0}^\infty \frac{1}{(n+1)^a}$$
$$= 2^{-a} \Gamma(a) \varsigma(a).$$

3. Suppose

$$\mu(A) = \mu_1(A) = \frac{1}{2} \int_A e^{-|t|} dt, \ A \in \mathcal{B}_{\mathbf{R}}$$

 $\mu_2=\mu\times\mu,...,\,\text{and}\ \ \mu_n=\mu_{n-1}\times\mu,\,n\geq 2.\ \text{Moreover, let}\ \varepsilon>0\ \text{and define}$

$$A_n = \left\{ x \in \mathbf{R}^n; \ || \ x |^2 - 2n | \le \varepsilon n \right\}$$

where $|x| = \sqrt{x_1^2 + ... + x_n^2}$ if $x = (x_1, ..., x_n) \in \mathbf{R}^n$. Show that

$$\mu_n(A_n^c) \le \frac{20}{n\varepsilon^2}$$

and conclude that

$$\lim_{n \to \infty} \mu_n(A_n) = 1.$$

Solution. First note that μ_n is a probability measure and

$$\int_{\mathbf{R}} t^2 d\mu(t) = 2.$$

2

By the Markov inequality

$$\begin{aligned} \mu_n(A_n^c) &\leq \frac{1}{n^2 \varepsilon^2} \int_{\mathbf{R}^n} (|x|^2 - 2n)^2 d\mu_n(x) \\ &= \frac{1}{n^2 \varepsilon^2} \int_{\mathbf{R}^n} (\sum_{1}^n (x_k^2 - 2))^2 d\mu_n(x) \\ &= \frac{1}{n^2 \varepsilon^2} \sum_{1}^n \int_{\mathbf{R}^n} (x_k^2 - 2)^2 d\mu_n(x) + \frac{2}{n^2 \varepsilon^2} \sum_{1 \leq j < k \leq n} \int_{\mathbf{R}^n} (x_j^2 - 2)(x_k^2 - 2) d\mu_n(x) \end{aligned}$$

Here, if $j \neq k$,

$$\int_{\mathbf{R}^n} (x_j^2 - 2)(x_k^2 - 2)d\mu_n(x) = \int_{\mathbf{R}} (x_j^2 - 2)d\mu(x_j) \int_{\mathbf{R}} (x_k^2 - 2)d\mu(x_k) = 0$$

and we get

$$\mu_n(A_n^c) \le \frac{C}{n\varepsilon^2}$$

where

$$C = \int_{\mathbf{R}} (t^2 - 2)^2 d\mu(t) = 20.$$

Consequently,

$$\lim_{n \to \infty} \mu_n(A_n^c) = 0$$

and since $1 - \mu_n(A_n^c) = \mu_n(A_n) \le 1$, we have

$$\lim_{n \to \infty} \mu_n(A_n) = 1.$$

4. Let \mathcal{C} be a collection of open balls in \mathbb{R}^n and let $V = \bigcup_{B \in \mathcal{C}} B$. Prove that to each $c < m_n(V)$, there exist pairwise disjoint $B_1, ..., B_k \in \mathcal{C}$ such that

$$\sum_{i=1}^{k} m_n(B_i) > 3^{-n}c.$$

(Here m_n denotes Lebesgue measure on \mathbf{R}^n .)

5. State and prove the Hahn decomposition theorem.