Solutions:
 INTEGRATION THEORY (7.5 hp)
 (GU[MMA110], $\mathbf{C T H}[T M V 100])$

August 16, 2010, morning, V.
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. Let (X, \mathcal{M}, μ) be a positive measure space, $\left\{E_{k}\right\}_{k=1}^{n}$ a collection of measurable sets, and $\left\{c_{k}\right\}_{k=1}^{n}$ a collection of positive real numbers. Set

$$
\nu(A)=\sum_{k=1}^{n} c_{k} \mu\left(A \cap E_{k}\right), \quad A \in \mathcal{M}
$$

Show that ν is absolutely continuous with respect to μ and find its RadonNikodym derivative $\frac{d \nu}{d \mu}$.

Solution. If $A \in \mathcal{M}$ and $\mu(A)=0$ we have $\mu\left(A \cap E_{k}\right)=0$ for $k=1, \ldots, n$ and it follows that $\nu(A)=0$. Hence $\nu \ll \mu$. Moreover, if $A \in \mathcal{M}$,

$$
\nu(A)=\sum_{k=1}^{n} c_{k} \int_{A} \chi_{E_{k}} d \mu=\int_{A} \sum_{k=1}^{n} c_{k} \chi_{E_{k}} d \mu
$$

and thus

$$
\frac{d \nu}{d \mu}=\sum_{k=1}^{n} c_{k} \chi_{E_{k}}
$$

2. Suppose $a>1$. Show that

$$
\int_{0}^{\infty} \frac{x^{a-1}}{e^{2 x}-1} d x=2^{-a} \Gamma(a) \varsigma(a)
$$

where

$$
\Gamma(a)=\int_{0}^{\infty} t^{a-1} e^{-t} d t
$$

and

$$
\varsigma(a)=\sum_{n=1}^{\infty} n^{-a} .
$$

Solution. We have

$$
\begin{gathered}
I={ }_{d e f} \int_{0}^{\infty} \frac{x^{a-1}}{e^{2 x}-1} d x=2^{-a} \int_{0}^{\infty} \frac{x^{a-1} e^{-x}}{1-e^{-x}} d x \\
=2^{-a} \int_{0}^{\infty} x^{a-1} e^{-x} \sum_{n=0}^{\infty} e^{-n x} d x
\end{gathered}
$$

Thus by monotone convergence

$$
\begin{gathered}
I=2^{-a} \sum_{n=0}^{\infty} \int_{0}^{\infty} x^{a-1} e^{-x} e^{-n x} d x \\
=2^{-a} \sum_{n=0}^{\infty} \frac{1}{(n+1)^{a}} \int_{0}^{\infty} y^{a-1} e^{-y} d y=2^{-a} \Gamma(a) \sum_{n=0}^{\infty} \frac{1}{(n+1)^{a}} \\
=2^{-a} \Gamma(a) \varsigma(a)
\end{gathered}
$$

3. Suppose

$$
\mu(A)=\mu_{1}(A)=\frac{1}{2} \int_{A} e^{-|t|} d t, \quad A \in \mathcal{B}_{\mathbf{R}}
$$

$\mu_{2}=\mu \times \mu, \ldots$, and $\mu_{n}=\mu_{n-1} \times \mu, n \geq 2$. Moreover, let $\varepsilon>0$ and define

$$
A_{n}=\left\{x \in \mathbf{R}^{n} ;\left.\quad| | x\right|^{2}-2 n \mid \leq \varepsilon n\right\}
$$

where $|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$. Show that

$$
\mu_{n}\left(A_{n}^{c}\right) \leq \frac{20}{n \varepsilon^{2}}
$$

and conclude that

$$
\lim _{n \rightarrow \infty} \mu_{n}\left(A_{n}\right)=1
$$

Solution. First note that μ_{n} is a probability measure and

$$
\int_{\mathbf{R}} t^{2} d \mu(t)=2
$$

By the Markov inequality

$$
\begin{gathered}
\mu_{n}\left(A_{n}^{c}\right) \leq \frac{1}{n^{2} \varepsilon^{2}} \int_{\mathbf{R}^{n}}\left(|x|^{2}-2 n\right)^{2} d \mu_{n}(x) \\
=\frac{1}{n^{2} \varepsilon^{2}} \int_{\mathbf{R}^{n}}\left(\sum_{1}^{n}\left(x_{k}^{2}-2\right)\right)^{2} d \mu_{n}(x) \\
=\frac{1}{n^{2} \varepsilon^{2}} \sum_{1}^{n} \int_{\mathbf{R}^{n}}\left(x_{k}^{2}-2\right)^{2} d \mu_{n}(x)+\frac{2}{n^{2} \varepsilon^{2}} \sum_{1 \leq j<k \leq n} \int_{\mathbf{R}^{n}}\left(x_{j}^{2}-2\right)\left(x_{k}^{2}-2\right) d \mu_{n}(x) .
\end{gathered}
$$

Here, if $j \neq k$,

$$
\int_{\mathbf{R}^{n}}\left(x_{j}^{2}-2\right)\left(x_{k}^{2}-2\right) d \mu_{n}(x)=\int_{\mathbf{R}}\left(x_{j}^{2}-2\right) d \mu\left(x_{j}\right) \int_{\mathbf{R}}\left(x_{k}^{2}-2\right) d \mu\left(x_{k}\right)=0
$$

and we get

$$
\mu_{n}\left(A_{n}^{c}\right) \leq \frac{C}{n \varepsilon^{2}}
$$

where

$$
C=\int_{\mathbf{R}}\left(t^{2}-2\right)^{2} d \mu(t)=20 .
$$

Consequently,

$$
\lim _{n \rightarrow \infty} \mu_{n}\left(A_{n}^{c}\right)=0
$$

and since $1-\mu_{n}\left(A_{n}^{c}\right)=\mu_{n}\left(A_{n}\right) \leq 1$, we have

$$
\lim _{n \rightarrow \infty} \mu_{n}\left(A_{n}\right)=1
$$

4. Let \mathcal{C} be a collection of open balls in \mathbf{R}^{n} and let $V=\cup_{B \in \mathcal{C}} B$. Prove that to each $c<m_{n}(V)$, there exist pairwise disjoint $B_{1}, \ldots, B_{k} \in \mathcal{C}$ such that

$$
\Sigma_{i=1}^{k} m_{n}\left(B_{i}\right)>3^{-n} c .
$$

(Here m_{n} denotes Lebesgue measure on \mathbf{R}^{n}.)
5. State and prove the Hahn decomposition theorem.

