Solutions:
 INTEGRATION THEORY (7.5 hp)
 (GU[MMA110], CTH[TMV100])

January 11, 2010, morning (5 hours), v
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. Suppose $p \in \mathbf{N}_{+}$and define $f_{n}(x)=n^{p} x^{p-1}(1-x)^{n}, 0 \leq x \leq 1$, for every $n \in \mathbf{N}_{+}$. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=(p-1)!
$$

Solution. We have

$$
\begin{gathered}
\int_{0}^{1} f_{n}(x) d x=\left\{x=\frac{t}{n}\right\}=\int_{0}^{n} t^{p-1}\left(1-\frac{t}{n}\right)^{n} d t \\
=\int_{0}^{\infty} \chi_{[0, n]}(t) t^{p-1}\left(1-\frac{t}{n}\right)^{n} d t
\end{gathered}
$$

Set $g_{n}(t)=\chi_{[0, n]}(t) t^{p-1}\left(1-\frac{t}{n}\right)^{n}, t \geq 0$. Then

$$
\lim _{t \rightarrow \infty} g_{n}(t)=t^{p-1} e^{-t}=_{\text {def }} h(t)
$$

and, as $e^{y} \geq 1+y, y \in \mathbf{R}$, it follows that

$$
\left|g_{n}(t)\right| \leq h(t), t \geq 0, n \in \mathbf{N}_{+} .
$$

Here $h \in \mathcal{L}^{1}(m$ on $[0, \infty[)$, and by using the dominated convergence theorem we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{\infty} g_{n}(t) d t \\
& =\int_{0}^{\infty} t^{p-1} e^{-t} d t=\Gamma(p)=(p-1)!.
\end{aligned}
$$

2. Let (X, \mathcal{M}, μ) be a probability space and suppose the sets $A_{1}, \ldots, A_{n} \in \mathcal{M}$ satisfy the inequality $\sum_{1}^{n} \mu\left(A_{i}\right)>n-1$. Show that $\mu\left(\cap_{1}^{n} A_{i}\right)>0$.

Solution. We have

$$
\sum_{1}^{n} \mu\left(A_{i}^{c}\right)=\sum_{1}^{n}\left(1-\mu\left(A_{i}\right)\right)=n-\sum_{1}^{n} \mu\left(A_{i}\right)<n-(n-1)=1
$$

Hence

$$
\mu\left(\bigcup_{1}^{n} A_{i}^{c}\right) \leq \sum_{1}^{n} \mu\left(A_{i}^{c}\right)<1
$$

and

$$
\mu\left(\bigcap_{1}^{n} A_{i}\right)=\mu\left(\left(\bigcup_{1}^{n} A_{i}^{c}\right)^{c}\right)=1-\mu\left(\bigcup_{1}^{n} A_{i}^{c}\right)>0
$$

3. Let μ and ν be probability measures on (X, \mathcal{M}) such that $|\mu-\nu|(X)=2$. Show that $\mu \perp \nu$.

Solution. Set $\sigma=(\mu+\nu) / 2$ and note that μ and ν are absolutely continuous with respect to the probability mesure σ. By applying the Radon-Nykodym theorem we get non-negative measurable functions f and g such that $d \mu=$ $f d \sigma$ and $d \nu=g d \sigma$. Here

$$
\begin{aligned}
& \int_{X} f d \sigma=\int_{X} g d \sigma=1 \\
& d(\mu-\nu)=(f-g) d \sigma
\end{aligned}
$$

and

$$
d|\mu-\nu|=|f-g| d \sigma
$$

Now, since $|f-g| \leq f+g$,

$$
2=\int_{X}|f-g| d \sigma \leq \int_{X}(f+g) d \sigma=2
$$

and we conclude there exists a set $A \in \mathcal{M}$ with $\sigma(A)=1$ such $f+g=|f-g|$ on A or, stated otherwise, $(f+g)^{2}=|f-g|^{2}$ on A. Thus $f g=0$ on A. Now set $P=\{x \in A ; f(x)>0\}$ and $N=P^{c}$. Then $\mu(P)=1$ and $\nu(N)=1$ as $\mu\left(A^{c}\right)=\nu\left(A^{c}\right)=0$. This proves that $\mu \perp \nu$.
4. State and prove Fatou's Lemma.
5. Let ν be a finite signed measure and μ a positive measure on (X, \mathcal{M}). Show that $\nu \ll \mu$ if and only if for every $\varepsilon>0$ there exists $\delta>0$ such that $|\nu(E)|<\varepsilon$ whenever $\mu(E)<\delta$.

