Solutions: INTEGRATION THEORY (7.5 hp) (GU[MMA110],CTH[TMV100]) January 11, 2010, morning (5 hours), v No aids. Examiner: Christer Borell, telephone number 0705292322 Each problem is worth 3 points.

1. Suppose $p \in \mathbf{N}_+$ and define $f_n(x) = n^p x^{p-1} (1-x)^n$, $0 \le x \le 1$, for every $n \in \mathbf{N}_+$. Show that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = (p-1)!.$$

Solution. We have

$$\int_0^1 f_n(x)dx = \left\{x = \frac{t}{n}\right\} = \int_0^n t^{p-1}(1-\frac{t}{n})^n dt$$
$$= \int_0^\infty \chi_{[0,n]}(t)t^{p-1}(1-\frac{t}{n})^n dt.$$

Set $g_n(t) = \chi_{[0,n]}(t)t^{p-1}(1-\frac{t}{n})^n, t \ge 0$. Then

$$\lim_{t \to \infty} g_n(t) = t^{p-1} e^{-t} =_{def} h(t)$$

and, as $e^y \ge 1 + y, y \in \mathbf{R}$, it follows that

$$|g_n(t)| \le h(t), t \ge 0, n \in \mathbf{N}_+.$$

Here $h \in \mathcal{L}^1(m \text{ on } [0, \infty[), \text{ and by using the dominated convergence theorem we have$

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \lim_{n \to \infty} \int_0^\infty g_n(t) dt$$
$$= \int_0^\infty t^{p-1} e^{-t} dt = \Gamma(p) = (p-1)!.$$

2. Let (X, \mathcal{M}, μ) be a probability space and suppose the sets $A_1, ..., A_n \in \mathcal{M}$ satisfy the inequality $\sum_{i=1}^{n} \mu(A_i) > n-1$. Show that $\mu(\cap_1^n A_i) > 0$.

Solution. We have

$$\sum_{i=1}^{n} \mu(A_i^c) = \sum_{i=1}^{n} (1 - \mu(A_i)) = n - \sum_{i=1}^{n} \mu(A_i) < n - (n - 1) = 1.$$

Hence

$$\mu(\bigcup_1^n A_i^c) \le \sum_1^n \mu(A_i^c) < 1$$

and

$$\mu(\bigcap_{1}^{n} A_{i}) = \mu((\bigcup_{1}^{n} A_{i}^{c})^{c}) = 1 - \mu(\bigcup_{1}^{n} A_{i}^{c}) > 0.$$

3. Let μ and ν be probability measures on (X, \mathcal{M}) such that $| \mu - \nu | (X) = 2$. Show that $\mu \perp \nu$.

Solution. Set $\sigma = (\mu + \nu)/2$ and note that μ and ν are absolutely continuous with respect to the probability mesure σ . By applying the Radon-Nykodym theorem we get non-negative measurable functions f and g such that $d\mu = f d\sigma$ and $d\nu = g d\sigma$. Here

$$\int_X f d\sigma = \int_X g d\sigma = 1,$$
$$d(\mu - \nu) = (f - g) d\sigma$$

and

$$d \mid \mu - \nu \mid = \mid f - g \mid d\sigma.$$

Now, since $\mid f - g \mid \leq f + g$,

$$2 = \int_X |f - g| d\sigma \le \int_X (f + g) d\sigma = 2$$

and we conclude there exists a set $A \in \mathcal{M}$ with $\sigma(A) = 1$ such f + g = |f - g|on A or, stated otherwise, $(f + g)^2 = |f - g|^2$ on A. Thus fg = 0 on A. Now set $P = \{x \in A; f(x) > 0\}$ and $N = P^c$. Then $\mu(P) = 1$ and $\nu(N) = 1$ as $\mu(A^c) = \nu(A^c) = 0$. This proves that $\mu \perp \nu$.

 $\mathbf{2}$

4. State and prove Fatou's Lemma.

5. Let ν be a finite signed measure and μ a positive measure on (X, \mathcal{M}) . Show that $\nu \ll \mu$ if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|\nu(E)| \ll \varepsilon$ whenever $\mu(E) \ll \delta$.