## Solutions:

INTEGRATION THEORY (7.5 hp)
(GU[MMA110GU], CTH[TMV100])
October 22, 2009, morning (5 hours), H
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. Let $n \in \mathbf{N}_{+}$and define $f_{n}(x)=e^{x}\left(1-\frac{x^{2}}{2 n}\right)^{n}, x \in \mathbf{R}$. Compute

$$
\lim _{n \rightarrow \infty} \int_{-\sqrt{2 n}}^{\sqrt{2 n}} f_{n}(x) d x
$$

Solution. We have

$$
I_{n}={ }_{d e f} \int_{-\sqrt{2 n}}^{\sqrt{2 n}} f_{n}(x) d x=\int_{-\infty}^{\infty} g_{n}(x) d x
$$

where $g_{n}(x)=\chi_{[-\sqrt{2 n}, \sqrt{2 n}]}(x) e^{x}\left(1-\frac{x^{2}}{2 n}\right)^{n}, x \in \mathbf{R}$. Now

$$
\lim _{t \rightarrow \infty} g_{n}(x)=e^{x-\frac{x^{2}}{2}}={ }_{\text {def }} h(x)
$$

and, as $e^{y} \geq 1+y, y \in \mathbf{R}$,

$$
\left(1-\frac{x^{2}}{2 n}\right)^{n} \leq e^{-\frac{x^{2}}{2}} \text { if }-\sqrt{2 n} \leq x \leq \sqrt{2 n} .
$$

Hence,

$$
\left|g_{n}(x)\right| \leq h(x), x \in \mathbf{R}, n \in \mathbf{N}_{+}
$$

where $h \in \mathcal{L}^{1}(m)$ and by using the dominated convergence theorem,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} I_{n}=\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} g_{n}(x) d t \\
=\int_{-\infty}^{\infty} e^{x-\frac{x^{2}}{2}} d x=e^{\frac{1}{2}} \int_{-\infty}^{\infty} e^{-\frac{(x-1)^{2}}{2}} d x=e^{\frac{1}{2}} \sqrt{2 \pi}
\end{gathered}
$$

2. Let $(X, \mathcal{M}, \mu)$ be a positive measure space and $f: X \rightarrow \mathbf{R}$ an $(\mathcal{M}, \mathcal{R})$ measurable function. Moreover, for each $t>1$, let

$$
a(t)=\sum_{n=-\infty}^{\infty} t^{n} \mu\left(t^{n} \leq|f|<t^{n+1}\right)
$$

Show that

$$
\lim _{t \rightarrow 1^{+}} a(t)=\int_{X}|f| d \mu
$$

Solution. Define

$$
g_{t}=\sum_{n=-\infty}^{\infty} t^{n} \chi_{\left\{t^{n} \leq|f|<t^{n+1}\right\}} \text { if } t>1
$$

and note that the Beppo Levi theorem implies that

$$
\int_{X} g_{t} d \mu=a(t)
$$

If $|f(x)|=0$, then $g_{t}(x)=0$. Moreover, if $t^{n} \leq|f(x)|<t^{n+1}$ for some integer $n$, then $g_{t}(x)=t^{n}$ and $|f(x)| \geq g_{t}(x)$. Thus

$$
|f| \geq g_{t}
$$

and we get

$$
\int_{X}|f| d \mu \geq \int_{X} g_{t} d \mu=a(t)
$$

Next suppose $|f(x)|>0$ and choose $n$ such that $t^{n} \leq|f(x)|<t^{n+1}$. Then

$$
t g_{t}(x)=\sum_{n=-\infty}^{\infty} t^{n+1} \chi_{\left\{t^{n} \leq|f|<t^{n+1}\right\}}(x)=t^{n+1}>|f(x)|
$$

and, hence,

$$
t g_{t} \geq|f|
$$

Now, by integration,

$$
t a(t) \geq \int_{X}|f| d \mu
$$

Thus

$$
t^{-1} \int_{X}|f| d \mu \leq a(t) \leq \int_{X}|f| d \mu
$$

and

$$
\lim _{t \rightarrow 1^{+}} a(t)=\int_{X}|f| d \mu
$$

3. Suppose $(X, \mathcal{M}, \mu)$ is a finite positive measure space and $f \in L^{1}(\mu)$. Define

$$
g(t)=\int_{X}|f(x)-t| d \mu(x), t \in \mathbf{R} .
$$

Prove that $g$ is absolutely continuous and

$$
g(t)=g(a)+\int_{a}^{t}(\mu(f \leq s)-\mu(f \geq s)) d s \quad \text { if } a, t \in \mathbf{R} .
$$

Solution. Suppose $\varepsilon>0$ is given and let $] a_{k}, b_{k}[, k=1, \ldots, n$, be disjoint open intervals such that $\Sigma_{1}^{n}\left|b_{k}-a_{k}\right|<\varepsilon /(1+\mu(X))$. Then

$$
\begin{aligned}
& \left|g\left(a_{k}\right)-g\left(b_{k}\right)\right|=\left|\int_{X}\right| f(x)-a_{k}\left|-\left|f(x)-b_{k}\right| d \mu(x)\right| \\
& \quad \leq \int_{X}| | f(x)-a_{k}\left|-\left|f(x)-b_{k}\right|\right| d \mu(x) \\
& \leq \int_{X}\left|\left(f(x)-a_{k}\right)-\left(f(x)-b_{k}\right)\right| d \mu(x)=\mu(X)\left|b_{k}-a_{k}\right|
\end{aligned}
$$

and, consequently,

$$
\sum_{1}^{n}\left|g\left(a_{k}\right)-g\left(b_{k}\right)\right| \leq \varepsilon .
$$

This proves that $g$ is absolutely continuous and therefore $g^{\prime}$ exists a.e. with respect to Lebesgue measure on $\mathbf{R}$ and

$$
g(t)=g(a)+\int_{a}^{t} g^{\prime}(s) d s \text { for all } t \in \mathbf{R} .
$$

Let $A=\{t \in \mathbf{R} ; \mu(f=t)>0\}$ and note that $A$ is at most denumerable. To compute $g^{\prime}(s)$ for fixed $s \notin A$, let $\left(h_{n}\right)_{0}^{\infty}$ be a sequence of non-zero real numbers which converges to zero. Then

$$
\frac{g\left(s+h_{n}\right)-g(s)}{h_{n}}=\int_{X} \frac{\left|s+h_{n}-f(x)\right|-|s-f(x)|}{h_{n}} d \mu(x)
$$

$$
=\int_{\{f \neq s\}} \frac{\left|s+h_{n}-f(x)\right|-|s-f(x)|}{h_{n}} d \mu(x) .
$$

Here

$$
\left|\frac{\left|s+h_{n}-f(x)\right|-|s-f(x)|}{h_{n}}\right| \leq 1
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\left|s+h_{n}-f(x)\right|-|s-f(x)|}{h_{n}}=\left\{\begin{array}{c}
1 \text { if } s>f(x) \\
-1 \text { if } s<f(x) .
\end{array}\right.
$$

Now the dominated convergence theorem gives

$$
\begin{aligned}
g^{\prime}(s) & =\int_{\{f \neq s\}}\left(\chi_{\{f<s\}}-\chi_{\{f>s\}}\right) d \mu=\int_{X}\left(\chi_{\{f<s\}}-\chi_{\{f>s\}}\right) d \mu \\
& =\mu(f<s)-\mu(f>s)=\mu(f \leq s)-\mu(f \geq s)
\end{aligned}
$$

In particular,

$$
g^{\prime}(s)=\mu(f \leq s)-\mu(f \geq s)
$$

a.e. with respect to Lebesgue measure on $\mathbf{R}$ and since $g$ is absolutely continuous we have

$$
g(t)=g(a)+\int_{a}^{t}(\mu(f \leq s)-\mu(f \geq s)) d s \quad \text { if } a, t \in \mathbf{R} .
$$

4. Suppose $(X, \mathcal{M}, \mu)$ is a positive measure space and $A_{n} \in \mathcal{M}, n \in \mathbf{N}_{+}$. Set

$$
E=\bigcup_{n \in \mathbf{N}_{+}} A_{n} \text { and } F=\bigcap_{n \in \mathbf{N}_{+}} A_{n}
$$

(a) Show that

$$
\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(E)
$$

if $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$.
(b) Show that

$$
\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(F)
$$

if $\mu\left(A_{1}\right)<\infty$ and $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$.
5. State and prove the monotone convergence theorem.

