LÖSNINGAR

INTEGRATIONSTEORI (5p)
(GU[MAF440], CTH[TMV100])
Dag, tid: 28 jan 2006
Hjälpmedel: Inga.
Skrivtid: 5 timmar

1. Suppose $f(x)=x \cos (\pi / x)$ if $0<x<2$ and $f(x)=0$ if $x \in \mathbf{R} \backslash] 0,2[$. Prove that f is not of bounded variation on \mathbf{R}.

Solution. We have

$$
\begin{aligned}
& \sum_{k=1}^{n}\left|f\left(\frac{1}{k+1}\right)-f\left(\frac{1}{k}\right)\right|=\Sigma_{k=1}^{n}\left|\frac{1}{k+1} \cos (k+1) \pi-\frac{1}{k} \cos k \pi\right| \\
& \quad=\sum_{k=1}^{n}\left(\frac{1}{k+1}+\frac{1}{k}\right)=\frac{1}{n+1}+1+2 \sum_{k=2}^{n} \frac{1}{k} \rightarrow \infty \text { as } n \rightarrow \infty .
\end{aligned}
$$

2. Let (X, \mathcal{M}, μ) be a finite positive measure space and suppose $\varphi(t)=$ $\min (t, 1), t \geq 0$. Prove that $f_{n} \rightarrow f$ in measure if and only if $\varphi\left(\left|f_{n}-f\right|\right) \rightarrow 0$ in $L^{1}(\mu)$.

Solution: \Rightarrow : For any $\varepsilon>0$,

$$
\begin{gathered}
\int_{X} \varphi\left(\left|f_{n}-f\right|\right) d \mu \leq \int_{\left|f_{n}-f\right| \leq \varepsilon} \varphi\left(\left|f_{n}-f\right|\right) d \mu \\
+\int_{\left|f_{n}-f\right|>\varepsilon} \varphi\left(\left|f_{n}-f\right|\right) d \mu \leq \int_{\left|f_{n}-f\right| \leq \varepsilon} \varphi(\varepsilon) d \mu+\int_{\left|f_{n}-f\right|>\varepsilon} 1 d \mu \\
\leq \varphi(\varepsilon) \mu(X)+\mu\left(\left|f_{n}-f\right|>\varepsilon\right) .
\end{gathered}
$$

Thus

$$
0 \leq \limsup _{n \rightarrow \infty} \int_{X} \varphi\left(\left|f_{n}-f\right|\right) d \mu \leq \varphi(\varepsilon) \mu(X)
$$

and by letting $\varepsilon \downarrow 0$,

$$
\lim _{n \rightarrow \infty} \int_{X} \varphi\left(\left|f_{n}-f\right|\right) d \mu=0
$$

\Leftarrow : For any $\varepsilon>0$,

$$
\mu\left(\left|f_{n}-f\right|>\varepsilon\right) \leq \mu\left(\varphi\left(\left|f_{n}-f\right|\right) \geq \varphi(\varepsilon)\right)
$$

and the Markov inequality gives

$$
\mu\left(\left|f_{n}-f\right|>\varepsilon\right) \leq \frac{1}{\varphi(\varepsilon)} \int_{X} \varphi\left(\left|f_{n}-f\right|\right) d \mu
$$

Thus $\mu\left(\left|f_{n}-f\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.
3. Let P denote the class of all Borel probability measures on $[0,1]$ and L the class of all functions $f:[0,1] \rightarrow[-1,1]$ such that

$$
|f(x)-f(y)| \leq|x-y|, x, y \in[0,1]
$$

For any $\mu, \nu \in P$, define

$$
\rho(\mu, \nu)=\sup _{f \in L}\left|\int_{[0,1]} f d \mu-\int_{[0,1]} f d \nu\right| .
$$

(a) Show that (P, ρ) is a metric space. (b) Compute $\rho(\mu, \nu)$ if μ is linear measure on $[0,1]$ and $\nu=\frac{1}{n} \Sigma_{k=0}^{n-1} \delta_{\frac{k}{n}}$, where $n \in \mathbf{N}_{+}$(linear measure on $[0,1]$ is Lebesgue measure on $[0,1]$ restricted to the Borel sets in $[0,1])$.

Solution. (a): (1) Clearly, $\rho(\mu, \nu) \geq 0$ and

$$
\rho(\mu, \nu) \leq \mu([0,1])+\nu([0,1])=2<\infty .
$$

Moreover, if $\mu \neq \nu$ there is a compact set $K \subseteq[0,1]$ such that $\mu(K) \neq \nu(K)$. If $f_{n}(x)=\max (0,1-n d(x, K)), x \in[0,1]$, then $f_{n} \downarrow \chi_{K}$, and the Lebesgue Dominated Convergence Theorem implies that

$$
\int_{[0,1]} f_{n} d \mu \neq \int_{[0,1]} f_{n} d \nu
$$

if n is sufficiently large. But $\frac{1}{n} f_{n} \in L$, and, hence, if n is large

$$
\rho(\mu, \nu) \geq\left|\int_{[0,1]} \frac{1}{n} f_{n} d \mu-\int_{[0,1]} \frac{1}{n} f_{n} d \nu\right|
$$

$$
=\frac{1}{n}\left|\int_{[0,1]} f_{n} d \mu-\int_{[0,1]} f_{n} d \nu\right|>0 .
$$

Thus $\rho(\mu, \nu)>0$.
(2) Since $|t|$ is an even function of $t, \rho(\mu, \nu)=\rho(\nu, \mu)$.
(3) If $f \in L$ and $\mu, \nu, \tau \in P$,

$$
\begin{gathered}
\left|\int_{[0,1]} f d \mu-\int_{[0,1]} f d \nu\right| \\
\leq\left|\int_{[0,1]} f d \mu-\int_{[0,1]} f d \tau\right|+\left|\int_{[0,1]} f d \tau-\int_{[0,1]} f d \nu\right| \\
\leq \rho(\mu, \tau)+\rho(\tau, \nu)
\end{gathered}
$$

and we get $\rho(\mu, \nu) \leq \rho(\mu, \tau)+\rho(\tau, \nu)$.
(b) If $f \in L$,

$$
\begin{aligned}
\mid \int_{[0,1]} f d \mu & -\int_{[0,1]} f d \nu\left|=\left|\int_{0}^{1} f(x) d x-\frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)\right|\right. \\
& =\left|\sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}}\left(f(x)-f\left(\frac{k}{n}\right)\right) d x\right| \\
& \leq \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}}\left|f(x)-f\left(\frac{k}{n}\right)\right| d x \\
& \leq \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}}\left|x-\frac{k}{n}\right| d x=\frac{1}{2 n}
\end{aligned}
$$

where equality occurs if $f(x)=x$. Thus $\rho(\mu, \nu)=\frac{1}{2 n}$.
4. Suppose (X, \mathcal{M}, μ) is a positive measure space and $w: X \rightarrow[0, \infty]$ a measurable function. Define

$$
\nu(A)=\int_{A} w d \mu, A \in \mathcal{M}
$$

Prove that ν is a positive measure and

$$
\int_{X} f d \nu=\int_{X} f w d \mu
$$

for every measurable function $f: X \rightarrow[0, \infty]$.
5. Suppose $f \in L_{l o c}^{1}\left(m_{n}\right)$ and set

$$
\left.\left(A_{r} f\right)(x)=\frac{1}{m_{n}(B(x, r))} \int_{B(x, r)} f(y) d y,(x, r) \in \mathbf{R}^{n} \times\right] 0, \infty[
$$

where $B(x, r)$ is the open ball of centre $x \in \mathbf{R}^{n}$ and radius $r>0$ (with respect to the Euclidean metric $d(x, y)=|x-y|)$.
(a) Set

$$
f^{*}(x)=\sup _{r>0}\left|\left(A_{r} f\right)(x)\right|, x \in \mathbf{R}^{n}
$$

Prove that

$$
\left\{f^{*} \geq \lambda\right\} \in \mathcal{B}\left(\mathbf{R}^{n}\right) \text { if } \lambda \geq 0
$$

(b) Use the (Wiener) Maximal Theorem to prove that

$$
\lim _{r \rightarrow 0+}\left(A_{r} f\right)(x)=f(x) \text { a.e. }\left[m_{n}\right]
$$

