LÖSNINGAR INTEGRATIONSTEORI (5p) (GU[MAF440],CTH[TMV100]) Dag, tid: 28 jan 2006 Hjälpmedel: Inga. Skrivtid: 5 timmar

1. Suppose $f(x) = x \cos(\pi/x)$ if 0 < x < 2 and f(x) = 0 if $x \in \mathbb{R} \setminus [0, 2[$. Prove that f is not of bounded variation on \mathbb{R} .

Solution. We have

$$\Sigma_{k=1}^{n} \mid f(\frac{1}{k+1}) - f(\frac{1}{k}) \mid = \Sigma_{k=1}^{n} \mid \frac{1}{k+1} \cos(k+1)\pi - \frac{1}{k} \cos k\pi \mid$$
$$= \Sigma_{k=1}^{n} \left(\frac{1}{k+1} + \frac{1}{k}\right) = \frac{1}{n+1} + 1 + 2\Sigma_{k=2}^{n} \frac{1}{k} \to \infty \text{ as } n \to \infty.$$

2. Let (X, \mathcal{M}, μ) be a finite positive measure space and suppose $\varphi(t) = \min(t, 1), t \ge 0$. Prove that $f_n \to f$ in measure if and only if $\varphi(|f_n - f|) \to 0$ in $L^1(\mu)$.

Solution: \Rightarrow : For any $\varepsilon > 0$,

$$\int_{X} \varphi(|f_n - f|) d\mu \leq \int_{|f_n - f| \leq \varepsilon} \varphi(|f_n - f|) d\mu$$
$$+ \int_{|f_n - f| > \varepsilon} \varphi(|f_n - f|) d\mu \leq \int_{|f_n - f| \leq \varepsilon} \varphi(\varepsilon) d\mu + \int_{|f_n - f| > \varepsilon} 1 d\mu$$
$$\leq \varphi(\varepsilon) \mu(X) + \mu(|f_n - f| > \varepsilon).$$

Thus

$$0 \le \limsup_{n \to \infty} \int_X \varphi(\mid f_n - f \mid) d\mu \le \varphi(\varepsilon) \mu(X)$$

and by letting $\varepsilon \downarrow 0$,

$$\lim_{n \to \infty} \int_X \varphi(\mid f_n - f \mid) d\mu = 0.$$

 \Leftarrow : For any $\varepsilon > 0$,

$$\mu(\mid f_n - f \mid > \varepsilon) \le \mu(\varphi(\mid f_n - f \mid) \ge \varphi(\varepsilon))$$

and the Markov inequality gives

$$\mu(\mid f_n - f \mid > \varepsilon) \le \frac{1}{\varphi(\varepsilon)} \int_X \varphi(\mid f_n - f \mid) d\mu$$

Thus $\mu(|f_n - f| > \varepsilon) \to 0$ as $n \to \infty$.

3. Let P denote the class of all Borel probability measures on [0, 1] and L the class of all functions $f : [0, 1] \rightarrow [-1, 1]$ such that

$$|f(x) - f(y)| \le |x - y|, x, y \in [0, 1]$$

For any $\mu, \nu \in P$, define

$$\rho(\mu,\nu) = \sup_{f \in L} \left| \int_{[0,1]} f d\mu - \int_{[0,1]} f d\nu \right|$$

(a) Show that (P, ρ) is a metric space. (b) Compute $\rho(\mu, \nu)$ if μ is linear measure on [0, 1] and $\nu = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{\frac{k}{n}}$, where $n \in \mathbf{N}_+$ (linear measure on [0, 1] is Lebesgue measure on [0, 1] restricted to the Borel sets in [0, 1]).

Solution. (a): (1) Clearly, $\rho(\mu, \nu) \ge 0$ and

$$\rho(\mu,\nu) \le \mu([0,1]) + \nu([0,1]) = 2 < \infty.$$

Moreover, if $\mu \neq \nu$ there is a compact set $K \subseteq [0, 1]$ such that $\mu(K) \neq \nu(K)$. If $f_n(x) = \max(0, 1 - nd(x, K)), x \in [0, 1]$, then $f_n \downarrow \chi_K$, and the Lebesgue Dominated Convergence Theorem implies that

$$\int_{[0,1]} f_n d\mu \neq \int_{[0,1]} f_n d\nu$$

if n is sufficiently large. But $\frac{1}{n}f_n \in L$, and, hence, if n is large

$$\rho(\mu,\nu) \ge |\int_{[0,1]} \frac{1}{n} f_n d\mu - \int_{[0,1]} \frac{1}{n} f_n d\nu |$$

 $\mathbf{2}$

$$= \frac{1}{n} \mid \int_{[0,1]} f_n d\mu - \int_{[0,1]} f_n d\nu \mid > 0.$$

Thus $\rho(\mu, \nu) > 0$.

(2) Since |t| is an even function of t, $\rho(\mu, \nu) = \rho(\nu, \mu)$.

(3) If $f \in L$ and $\mu, \nu, \tau \in P$,

$$\begin{split} | \int_{[0,1]} f d\mu - \int_{[0,1]} f d\nu | \\ \leq | \int_{[0,1]} f d\mu - \int_{[0,1]} f d\tau | + | \int_{[0,1]} f d\tau - \int_{[0,1]} f d\nu | \\ \leq \rho(\mu,\tau) + \rho(\tau,\nu) \end{split}$$

and we get $\rho(\mu, \nu) \leq \rho(\mu, \tau) + \rho(\tau, \nu)$. (b) If $f \in L$,

$$\begin{split} |\int_{[0,1]} f d\mu - \int_{[0,1]} f d\nu | = |\int_0^1 f(x) dx - \frac{1}{n} \sum_{k=0}^{n-1} f(\frac{k}{n}) | \\ = |\sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} (f(x) - f(\frac{k}{n})) dx | \\ \le \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |f(x) - f(\frac{k}{n})| dx \\ \le \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |x - \frac{k}{n}| dx = \frac{1}{2n} \end{split}$$

where equality occurs if f(x) = x. Thus $\rho(\mu, \nu) = \frac{1}{2n}$.

4. Suppose (X, \mathcal{M}, μ) is a positive measure space and $w : X \to [0, \infty]$ a measurable function. Define

$$\nu(A) = \int_A w d\mu, \ A \in \mathcal{M}.$$

Prove that ν is a positive measure and

$$\int_X f d\nu = \int_X f w d\mu$$

for every measurable function $f:X\to [0,\infty]\,.$

5. Suppose $f \in L^1_{loc}(m_n)$ and set

$$(A_r f)(x) = \frac{1}{m_n(B(x,r))} \int_{B(x,r)} f(y) dy, \ (x,r) \in \mathbf{R}^n \times]0, \infty[$$

where B(x, r) is the open ball of centre $x \in \mathbf{R}^n$ and radius r > 0 (with respect to the Euclidean metric d(x, y) = |x - y|).

(a) Set

$$f^*(x) = \sup_{r>0} |(A_r f)(x)|, \ x \in \mathbf{R}^n.$$

Prove that

$$\{f^* \ge \lambda\} \in \mathcal{B}(\mathbf{R}^n) \text{ if } \lambda \ge 0.$$

(b) Use the (Wiener) Maximal Theorem to prove that

$$\lim_{r \to 0+} (A_r f)(x) = f(x) \text{ a.e. } [m_n].$$