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1. Suppose f(x) = x cos(�=x) if 0 < x < 2 and f(x) = 0 if x 2 Rn ]0; 2[ :
Prove that f is not of bounded variation on R.

Solution. We have
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!1 as n!1:

2. Let (X;M; �) be a �nite positive measure space and suppose '(t) =
min(t; 1); t � 0: Prove that fn ! f in measure if and only if '(j fn�f j)! 0
in L1(�):

Solution: ): For any " > 0;Z
X
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Thus
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and by letting " # 0;
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(: For any " > 0;

�(j fn � f j> ") � �('(j fn � f j) � '("))

and the Markov inequality gives

�(j fn � f j> ") �
1

'(")

Z
X

'(j fn � f j)d�:

Thus �(j fn � f j> ")! 0 as n!1:

3. Let P denote the class of all Borel probability measures on [0; 1] and L
the class of all functions f : [0; 1]! [�1; 1] such that

j f(x)� f(y) j�j x� y j; x; y 2 [0; 1] :

For any �; � 2 P; de�ne

�(�; �) = sup
f2L

j
Z
[0;1]

fd��
Z
[0;1]

fd� j :

(a) Show that (P; �) is a metric space. (b) Compute �(�; �) if � is linear
measure on [0; 1] and � = 1

n
�n�1k=0� k

n
; where n 2 N+ (linear measure on [0; 1]

is Lebesgue measure on [0; 1] restricted to the Borel sets in [0; 1]).

Solution. (a): (1) Clearly, �(�; �) � 0 and

�(�; �) � �([0; 1]) + �([0; 1]) = 2 <1:

Moreover, if � 6= � there is a compact set K � [0; 1] such that �(K) 6= �(K):
If fn(x) = max(0; 1� nd(x;K)); x 2 [0; 1] ; then fn # �K ; and the Lebesgue
Dominated Convergence Theorem implies thatZ
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if n is su¢ ciently large. But 1
n
fn 2 L; and, hence, if n is large
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=
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[0;1]

fnd� j> 0:

Thus �(�; �) > 0:
(2) Since j t j is an even function of t; �(�; �) = �(�; �):
(3) If f 2 L and �; �; � 2 P;
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and we get �(�; �) � �(�; �) + �(� ; �):
(b) If f 2 L;
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where equality occurs if f(x) = x: Thus �(�; �) = 1
2n
:

4. Suppose (X;M; �) is a positive measure space and w : X ! [0;1] a
measurable function. De�ne

�(A) =

Z
A

wd�; A 2M:
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Prove that � is a positive measure andZ
X

fd� =

Z
X

fwd�

for every measurable function f : X ! [0;1] :

5. Suppose f 2 L1loc(mn) and set

(Arf)(x) =
1

mn(B(x; r))

Z
B(x;r)

f(y)dy; (x; r) 2 Rn � ]0;1[

where B(x; r) is the open ball of centre x 2 Rn and radius r > 0 (with
respect to the Euclidean metric d(x; y) =j x� y j).
(a) Set

f �(x) = sup
r>0

j (Arf)(x) j; x 2 Rn:

Prove that
ff � � �g 2 B(Rn) if � � 0:

(b) Use the (Wiener) Maximal Theorem to prove that

lim
r!0+

(Arf)(x) = f(x) a.e. [mn] :


