Tentamen i integrationsteori 2008–01–14 08.30-13.30 Default: Inga, inte ens räknedosa 076-272 18 61 BB

- 1. Formulate and prove the monotone convergence theorem.
- 2. Prove (and state precisely) Fubini's theorem for measurable sets in a product space

$$\mu \times \nu(E) = \int \nu(E_x) d\mu(x) = \int \mu(E^y) d\nu(y).$$

- 3. State and prove the Hardy-Littlewood maximal theorem.
- 4. Assume $\mu(X) < \infty$ and let $f \ge 0$ be a measurable function such that

$$\int f^2 d\mu < \infty.$$

Show

$$\int f d\mu < \infty.$$

- 2
- 5. Suppose f is integrable on $(0, \infty)$. Show that

$$\sum |f(2^n x)| < \infty$$

almost everywhere. 2

6. For a measurable real valued function f on a measure space X, put

$$E(t) = \mu(\{x; |f(x)| > t\}).$$

a) Prove that

$$\int |f|^2 d\mu = \int_0^\infty p t^{p-1} E(t) dt$$

2

b) Suppose $|f| \le 1$ and that $E(t) \le C/t$. Prove that $\int |f|^2 d\mu < \infty.$

2

7. Let

$$I_n(g) = \frac{2n}{\sqrt{\pi}} \int_0^\infty e^{-(nx)^2} g(x) dx.$$

a) Assume g is bounded, measurable and continuous at the origin. Show that $I_n(g) \to g(0)$ as n tends to infinity. 2 b) Assume g is in L^1 and put

$$G(x) = \int_0^x g(t)dt$$

Assume G'(0) = g(0). Show that $I_n(g) \to g(0)$ as n tends to infinity. (Hint: integrate by parts) 2