LÖSNINGAR

INTEGRATIONSTEORI (5p)
(GU[MAF440], CTH[TMV100])
Dag, tid: 25 febr 2006
Hjälpmedel: Inga.
Skrivtid: 5 timmar

1. Suppose

$$
f(t)=\int_{0}^{\infty} \frac{x e^{-x^{2}}}{x^{2}+t^{2}} d x, t>0
$$

Compute

$$
\lim _{t \rightarrow 0+} f(t) \text { and } \int_{0}^{\infty} f(t) d t
$$

Finally, prove that f is differentiable.

Solution. Suppose $t_{n} \downarrow 0$. Then for each $x>0, \frac{x e^{-x^{2}}}{x^{2}+t_{n}^{2}} \uparrow \frac{1}{x} e^{-x^{2}}$ and the LMC implies that

$$
\int_{0}^{\infty} \frac{x e^{-x^{2}}}{x^{2}+t_{n}^{2}} d x \uparrow \int_{0}^{\infty} \frac{1}{x} e^{-x^{2}} d x=\infty
$$

since $e^{-x^{2}}>\frac{1}{3} \chi_{[0,1]}(x)$ if $x \geq 0$ and

$$
\int_{0}^{1} \frac{1}{x} d x=\infty .
$$

Hence

$$
\lim _{t \rightarrow 0+} f(t)=\infty
$$

Furthermore, the Tonelli Theorem yields

$$
\begin{gathered}
\int_{0}^{\infty} f(t) d t=\int_{0}^{\infty}\left\{\int_{0}^{\infty} \frac{x e^{-x^{2}}}{x^{2}+t^{2}} d t\right\} d x \\
=\int_{0}^{\infty}\left[e^{-x^{2}} \arctan \frac{t}{x}\right]_{t=0}^{t=\infty} d x=\frac{\pi}{2} \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\pi^{\frac{3}{2}}}{4} .
\end{gathered}
$$

Finally, it is enough to prove that $f(t)$ is differentiable on the interior of any given compact subinterval $[a, b]$ of $] 0, \infty[$. To this end, first note that

$$
\frac{\partial}{\partial t} \frac{x e^{-x^{2}}}{x^{2}+t^{2}}=-\frac{2 t x e^{-x^{2}}}{\left(x^{2}+t^{2}\right)^{2}}
$$

and

$$
\sup _{a \leq t \leq b}\left|\frac{\partial}{\partial t} \frac{x e^{-x^{2}}}{x^{2}+t^{2}}\right| \leq \frac{2 b x e^{-x^{2}}}{\left(x^{2}+a^{2}\right)^{2}} \in L^{1}\left(m_{0, \infty}\right)
$$

Therefore, by a familiar result (Folland Theorem 2.27 or LN, Example 2.2.1) $f^{\prime}(t)$ exists for all $a<t<b$ and equals

$$
\int_{0}^{\infty} \frac{\partial}{\partial t} \frac{x e^{-x^{2}}}{x^{2}+t^{2}} d x=-2 t \int_{0}^{\infty} \frac{x e^{-x^{2}}}{\left(x^{2}+t^{2}\right)^{2}} d x
$$

2. Suppose μ is a finite positive Borel measure on \mathbf{R}^{n}. (a) Let $\left(V_{i}\right)_{i \in I}$ be a family of open subsets of \mathbf{R}^{n} and $V=\cup_{i \in I} V_{i}$. Prove that

$$
\mu(V)=\sup _{\substack{i_{1}, \ldots, i_{k} \in I \\ k \in \mathbf{N}_{+}}} \mu\left(V_{i_{1}} \cup \ldots \cup V_{i_{k}}\right)
$$

(b) Let $\left(F_{i}\right)_{i \in I}$ be a family of closed subsets of \mathbf{R}^{n} and $F=\cap_{i \in I} F_{i}$. Prove that

$$
\mu(F)=\inf _{\substack{i_{1}, \ldots, i_{k} \in I \\ k \in \mathbf{N}_{+}}} \mu\left(F_{i_{1}} \cap \ldots \cap F_{i_{k}}\right)
$$

Solution. (a) Since $V \supseteq V_{i_{1}} \cup \ldots \cup V_{i_{k}}$ for all $i_{1}, \ldots i_{k} \in I$ and $k \in \mathbf{N}_{+}$,

$$
\mu(V) \geq \sup _{\substack{i_{1}, \ldots, i_{k} \in I \\ k \in \mathbf{N}_{+} \in I}} \mu\left(V_{i_{1}} \cup \ldots \cup V_{i_{k}}\right) .
$$

To prove the reverse inequality first note that

$$
\mu(A)=\sup _{\substack{K \subseteq A \\ K \text { compact }}} \mu(K)
$$

if $A \in \mathcal{R}_{n}$. Now first choose $\varepsilon>0$ and then a compact subset K of \mathbf{R}^{n} such that

$$
\mu(K)>\mu(V)-\varepsilon .
$$

Then there are finitely many $i_{1}, \ldots, i_{k} \in I$ such that $V_{i_{1}} \cup \ldots \cup V_{i_{k}} \supseteq K$. Accordingly from this,

$$
\mu\left(V_{i_{1}} \cup \ldots \cup V_{i_{k}}\right)>\mu(V)-\varepsilon
$$

and we get

$$
\sup _{\substack{i_{1} \ldots, i_{k} \in I \\ k \in \mathbf{N}_{+}}} \mu\left(V_{i_{1}} \cup \ldots \cup V_{i_{k}}\right) \geq \mu(V) .
$$

Thus

$$
\mu(V)=\sup _{\substack{i_{1}, \ldots, i_{k} \in I \\ k \in \mathbf{N}_{+}}} \mu\left(V_{i_{1}} \cup \ldots \cup V_{i_{k}}\right) .
$$

b) Since μ is a finite measure, by Part (a)

$$
\begin{gathered}
\mu(F)=\mu\left(\mathbf{R}^{n}\right)-\mu\left(F^{c}\right) \\
=\mu\left(\mathbf{R}^{n}\right)-\sup _{\substack{i_{1}, \ldots, i_{k} \in I \\
k \in \mathbf{N}_{+}}} \mu\left(F_{i_{1}}^{c} \cup \ldots \cup F_{i_{k}}^{c}\right) \\
=\inf _{\substack{i_{1}, \ldots, i_{\mathbf{N}} \in I \\
k \in \mathbf{N}_{+}}}\left(\mu\left(\mathbf{R}^{n}\right)-\mu\left(F_{i_{1}}^{c} \cup \ldots \cup F_{i_{k}}^{c}\right)\right) \\
=\inf _{\substack{i_{1}, \ldots, i_{k} \in I \\
k \in \mathbf{N}_{+}}} \mu\left(\left(F_{i_{1}}^{c} \cup \ldots \cup F_{i_{k}}^{c}\right)^{c}\right) \\
=\inf _{\substack{i_{1}, \ldots, i_{k} \in I \\
k \in \mathbf{N}_{+}}} \mu\left(F_{i_{1}} \cap \ldots \cap F_{i_{k}}\right) .
\end{gathered}
$$

3. Suppose f and g are real-valued absolutely continuous functions on the compact interval $[a, b]$. Show that the function $h=\max (f, g)$ is absolutely continuous and $h^{\prime} \leq \max \left(f^{\prime}, g^{\prime}\right)$ a.e. $\left[m_{a, b}\right]\left(m_{a, b}\right.$ denotes Lebesgue measure on $[a, b]$).

Solution. If $\left(A_{i}\right)_{1 \leq i \leq 2}$ and $\left(B_{i}\right)_{1 \leq i \leq 2}$ are sequences of real numbers

$$
A_{i} \leq B_{i}+\left|A_{i}-B_{i}\right|
$$

$$
\leq B_{i}+\max _{1 \leq i \leq 2}\left|A_{i}-B_{i}\right| \leq \max _{1 \leq i \leq 2} B_{i}+\max _{1 \leq i \leq 2}\left|A_{i}-B_{i}\right|
$$

and, hence,

$$
\max _{1 \leq i \leq 2} A_{i} \leq \max _{1 \leq i \leq 2}\left|A_{i}-B_{i}\right|+\max _{1 \leq i \leq 2} B_{i}
$$

and

$$
\max _{1 \leq i \leq 2} A_{i}-\max _{1 \leq i \leq 2} B_{i} \leq \max _{1 \leq i \leq 2}\left|A_{i}-B_{i}\right| .
$$

Thus, by interchanging A_{i} and B_{i},

$$
\left|\max _{1 \leq i \leq 2} A_{i}-\max _{1 \leq i \leq 2} B_{i}\right| \leq \max _{1 \leq i \leq 2}\left|A_{i}-B_{i}\right| .
$$

Next choose $\varepsilon>0$. Then there exists a $\delta>0$ such that

$$
\sum_{k=1}^{n}\left|f\left(a_{k}\right)-f\left(b_{k}\right)\right|<\varepsilon / 2
$$

and

$$
\sum_{k=1}^{n}\left|g\left(a_{k}\right)-g\left(b_{k}\right)\right|<\varepsilon / 2
$$

if $n \in \mathbf{N}_{+}$and $] a_{i}, b_{i}[, i=1, \ldots, n$, are mutually disjoint subintervals of $[a, b]$. Thus, for such intervals

$$
\begin{gathered}
\sum_{k=1}^{n}\left|h\left(a_{k}\right)-h\left(b_{k}\right)\right| \\
\leq \sum_{k=1}^{n} \max \left(\left|f\left(a_{k}\right)-f\left(b_{k}\right)\right|,\left|g\left(a_{k}\right)-g\left(b_{k}\right)\right|\right) \\
\leq \sum_{k=1}^{n}\left(\left|f\left(a_{k}\right)-f\left(b_{k}\right)\right|+\left|g\left(a_{k}\right)-g\left(b_{k}\right)\right|\right)<\varepsilon
\end{gathered}
$$

and it follows that h is absolutely continuous.
As above it follows that

$$
\max _{1 \leq i \leq 2} A_{i}-\max _{1 \leq i \leq 2} B_{i} \leq \max _{1 \leq i \leq 2}\left(A_{i}-B_{i}\right)
$$

Therefore, for each $x \in] a, b[$ and $\omega \in] 0, b-x[$,

$$
h(x+\omega)-h(x) \leq \max (f(x+\omega)-f(x), g(x+\omega)-g(x))
$$

and

$$
\frac{h(x+\omega)-h(x)}{\omega} \leq \max \left(\frac{f(x+\omega)-f(x)}{\omega}, \frac{g(x+\omega)-g(x)}{\omega}\right) .
$$

Since f, g, and h are absolutely continuous, by letting $\omega \downarrow 0$, we get $h^{\prime}(x) \leq$ $\max \left(f^{\prime}(x), g^{\prime}(x)\right)$ for $m_{a, b}$-almost all $x \in[a, b]$.
4. Suppose (X, \mathcal{M}, μ) is a positive measure space. (a) If $f_{n} \rightarrow f$ in measure and $f_{n} \rightarrow g$ in measure, show that $f=g$ a.e. [μ]. (b) If $f_{n} \rightarrow f$ in L^{1}, show that $f_{n} \rightarrow f$ in measure.
5. (Lebesgue's Dominated Convergence Theorem) Suppose (X, \mathcal{M}, μ) is a positive measure space and $f_{n}: X \rightarrow \mathbf{R}, n \in \mathbf{N}_{+}$, measurable functions such that

$$
\left|f_{n}(x)\right| \leq g(x), \text { all } x \in X \text { and } n \in \mathbf{N}_{+}
$$

where $g \in \mathcal{L}^{1}(\mu)$. Moreover, suppose the $\operatorname{limit}^{\lim }{ }_{n \rightarrow \infty} f_{n}(x)$ exists and equals $f(x)$ for every $x \in X$.

Prove that $f \in \mathcal{L}^{1}(\mu)$,

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=0
$$

and

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

