LÖSNINGAR

INTEGRATIONSTEORI (5p)
(GU[MAF440], CTH[TMV100])
Dag, tid: 10 september 2005 fm
Hjälpmedel: Inga.
Skrivtid: 4 timmar

1. Suppose (X, \mathcal{M}, μ) is a positive measure space and (Y, \mathcal{N}) a measurable space. Furthermore, suppose $f: X \rightarrow Y$ is $(\mathcal{M}, \mathcal{N})$-measurable and let $\nu=\mu f^{-1}$, that is $\nu(B)=\mu\left(f^{-1}(B)\right)$ if $B \in \mathcal{N}$. Show that f is $\left(\mathcal{M}^{-}, \mathcal{N}^{-}\right)$measurable, where \mathcal{M}^{-}denotes the completion of \mathcal{M} with respect to μ and \mathcal{N}^{-}the completion of \mathcal{N} with respect to ν.

Solution: Suppose $B \in \mathcal{N}^{-}$. We will prove that $f^{-1}(B) \in \mathcal{M}^{-}$. To this end, choose $B_{0}, B_{1} \in \mathcal{N}$ such that $B_{0} \subseteq B \subseteq B_{1}$ and $\nu\left(B_{1} \backslash B_{0}\right)=0$. Then $f^{-1}\left(B_{0}\right), f^{-1}\left(B_{1}\right) \in \mathcal{M}$ and $f^{-1}\left(B_{0}\right) \subseteq f^{-1}(B) \subseteq f^{-1}\left(B_{1}\right)$. Furthermore, $f^{-1}\left(B_{1}\right) \backslash f^{-1}\left(B_{0}\right)=f^{-1}\left(B_{1} \backslash B_{0}\right)$ and we get

$$
\mu\left(f^{-1}\left(B_{1}\right) \backslash f^{-1}\left(B_{0}\right)\right)=\nu\left(B_{1} \backslash B_{0}\right)=0
$$

Thus $f^{-1}(B) \in \mathcal{M}^{-}$and we are done.
2. Compute the following limit and justify the calculations:

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{n^{2}} e^{-n x} d x
$$

Solution. We have

$$
\begin{gathered}
\left(1+\frac{x}{n}\right)^{n^{2}} e^{-n x}=e^{n^{2} \ln \left(1+\frac{x}{n}\right)-n x} \\
=e^{n^{2}\left(\frac{x}{n}-\frac{x^{2}}{2 n^{2}}+\left(\frac{x}{n}\right)^{3} B\left(\frac{x}{n}\right)\right)-n x}
\end{gathered}
$$

where B is bounded in a neighbourhood of the origin. Accordingly from this,

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n^{2}} e^{-n x}=e^{-\frac{x^{2}}{2}} .
$$

To find a majorant, let $x \geq 0$ be fixed and introduce the function

$$
f(n)=n^{2} \ln \left(1+\frac{x}{n}\right)-n x
$$

defined for all real $n \geq 1$. We claim that

$$
f^{\prime}(n)=2 n \ln \left(1+\frac{x}{n}\right)-\frac{2 x+\frac{x^{2}}{n}}{1+\frac{x}{n}} \leq 0 .
$$

To see this put

$$
g(t)=2(1+t) \ln (1+t)-\left(2 t+t^{2}\right) \text { for } t \geq 0
$$

and note that $f^{\prime}(n) \leq 0$ if and only if $g\left(\frac{x}{n}\right) \leq 0$. But $g(0)=0$ and

$$
g^{\prime}(t)=2(\ln (1+t)-t) \leq 0
$$

and it follows that $g \leq 0$. Thus $f^{\prime}(n) \leq 0$ and, hence, $f(n) \leq f(1)$. Now

$$
\left(1+\frac{x}{n}\right)^{n^{2}} e^{-n x} \leq(1+x) e^{-x} \in L^{1}\left(m_{0, \infty}\right)
$$

where $m_{0, \infty}$ is Lebesgue measure on $[0, \infty[$ and the Lebesgue Dominated Convergence Theorem implies that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{n^{2}} e^{-n x} d x=\int_{0}^{\infty} e^{-\frac{x^{2}}{2}} d x=\sqrt{\frac{\pi}{2}}
$$

3. Suppose $a>0$ and

$$
\mu_{a}=e^{-a} \sum_{n=0}^{\infty} \frac{a^{n}}{n!} \delta_{n}
$$

where δ_{n} is the Dirac measure on $\mathbf{N}=\{0,1,2, \ldots\}$ at the point $n \in \mathbf{N}$, that is $\delta_{n}(A)=\chi_{A}(n)$ if $n \in \mathbf{N}$ and $A \subseteq \mathbf{N}$. Prove that

$$
\left(\mu_{a} \times \mu_{b}\right) s^{-1}=\mu_{a+b}
$$

for all $a, b>0$ if $s(x, y)=x+y, x, y \in \mathbf{N}$.

Solution. If μ and ν are finite positive measures on \mathbf{N}, we define $\mu * \nu=$ $(\mu \times \nu) s^{-1}$. Now, given $a, b>0$ and $A \in \mathcal{P}(\mathbf{N})$, the Tonelli Theorem implies that

$$
\begin{gathered}
\left(\mu_{a} * \mu_{b}\right)(A)=\left(\mu_{a} \times \mu_{b}\right)\left(\left\{(x, y) \in \mathbf{N}^{2} ; x+y \in A\right\}\right) \\
=\int_{\mathbf{N}} \mu_{a}(\{x \in \mathbf{N} ; x+y \in A\}) d \mu_{b}(y)
\end{gathered}
$$

and by applying the Lebesgue Monotone Convergence Theorem we have,

$$
\begin{gathered}
\left(\mu_{a} * \mu_{b}\right)(A)=\sum_{i=0}^{\infty} e^{-a} \frac{a^{i}}{i!} \int_{\mathbf{N}} \delta_{i}(\{x \in \mathbf{N} ; x+y \in A\}) d \mu_{b}(y) \\
=\sum_{i=0}^{\infty} e^{-a} \frac{a^{i}}{i!}\left(\delta_{i} * \mu_{b}\right)(A) .
\end{gathered}
$$

In a similar way,

$$
\left(\delta_{i} * \mu_{b}\right)(A)=\sum_{j=0}^{\infty} e^{-b} \frac{b^{j}}{j!}\left(\delta_{i} * \delta_{j}\right)(A)
$$

Since $\delta_{i} * \delta_{j}=\delta_{i+j}$, we get

$$
\begin{gathered}
\left(\mu_{a} * \mu_{b}\right)(A)=\sum_{i, j=0}^{\infty} e^{-(a+b)} \frac{a^{i} b^{j}}{i!j!} \delta_{i+j}(A) \\
=\sum_{n=0}^{\infty}\left(e^{-(a+b)} \delta_{n}(A) \sum_{\substack{i+j=n \\
i . j \geq 0}} \frac{a^{i} b^{j}}{i!j!}\right)=\sum_{n=0}^{\infty} e^{-(a+b)} \frac{(a+b)^{n}}{n!} \delta_{n}(A)=\mu_{a+b}(A) .
\end{gathered}
$$

4. Suppose $f:] a, b\left[\times X \rightarrow \mathbf{R}\right.$ is a function such that $f(t, \cdot) \in \mathcal{L}^{1}(\mu)$ for each $t \in] a, b\left[\right.$ and, moreover, assume $\frac{\partial f}{\partial t}$ exists and

$$
\left.\left|\frac{\partial f}{\partial t}(t, x)\right| \leq g(x) \text { for all }(t, x) \in\right] a, b[\times X
$$

where $g \in \mathcal{L}^{1}(\mu)$. Set

$$
\left.F(t)=\int_{X} f(t, x) d \mu(x) \text { if } t \in\right] a, b[.
$$

Prove that F is differentiable and

$$
\left.F^{\prime}(t)=\int_{X} \frac{\partial f}{\partial t}(t, x) d \mu(x) \text { if } t \in\right] a, b[
$$

5. Suppose θ is an outer measure on X and let $\mathcal{M}(\theta)$ be the set of all $A \subseteq X$ such that

$$
\theta(E)=\theta(E \cap A)+\theta\left(E \cap A^{c}\right) \text { for all } E \subseteq X
$$

Prove that $\mathcal{M}(\theta)$ is a σ-algebra and that the restriction of θ to $\mathcal{M}(\theta)$ is a complete measure.

