LÖSNINGAR INTEGRATIONSTEORI (5p)

 $(\mathbf{GU}[MAF440], \mathbf{CTH}[TMV100])$

Dag, tid: 19 februari 2005 fm

Hjälpmedel: Inga.

Notation: Lebesgue measure on \mathbf{R} is denoted by m

1. Evaluate

$$\lim_{n\to\infty} \int_0^n (1-\frac{x}{n})^n \frac{1+nx}{n+x} \cos x dx.$$

Solution. Set

$$f_n(x) = \chi_{[0,n]}(x)(1 - \frac{x}{n})^n \frac{1 + nx}{n + x} \cos x, \ x \ge 0$$

where $n \in \mathbb{N}_+$. Then

$$|f_n(x)| \le \chi_{[0,n]}(x)(1-\frac{x}{n})^n \frac{1+nx}{n+x} \le \chi_{[0,n]}(x)(1-\frac{x}{n})^n (1+x)$$

and since $e^t \ge 1 + t$ for all real t, we get

$$|f_n(x)| \le e^{-x}(1+x) \in L^1(m_{0,\infty})$$

where $m_{0,\infty}$ denotes Lebesgue measure on $[0,\infty[$. Moreover,

$$f_n(x) \to e^{-x} x \cos x \text{ as } n \to \infty$$

and the Lebesgue Dominated Convergence Theorem gives

$$\lim_{n\to\infty} \int_0^n (1-\frac{x}{n})^n \frac{1+nx}{n+x} \cos x dx = \int_0^\infty e^{-x} x \cos x dx.$$

To evaluate this integral we first use partial integration to obtain

$$\int_0^\infty e^{-tx} \cos x dx = \frac{t}{1+t^2}, \ t > 0.$$

Here for every $t \geq \frac{1}{2}$,

$$\left|\frac{\partial}{\partial t}e^{-tx}\cos x\right| = \left|-xe^{-tx}\cos x\right| \le xe^{-\frac{1}{2}x} \in L^1(m_{0,\infty})$$

and the theorem about interchanging a derivative and an integral yields

$$\int_0^\infty \frac{\partial}{\partial t} e^{-tx} \cos x dx = \frac{\partial}{\partial t} \frac{t}{1+t^2}, \ t \ge \frac{1}{2}.$$

In particular,

$$\int_0^\infty xe^{-x}\cos xdx = \left[\frac{t^2 - 1}{(t^2 + 1)^2}\right]_{|t=1} = 0$$

and we get

$$\lim_{n \to \infty} \int_0^n (1 - \frac{x}{n})^n \frac{1 + nx}{n + x} \cos x dx = 0.$$

2. Suppose μ is a finite positive Borel measure on \mathbf{R}^n and $f \colon \mathbf{R}^n \to \mathbf{R}$ a Borel measurable function. Set g(x,y) = f(x) - f(y), $x,y \in \mathbf{R}^n$. Prove that $f \in L^1(\mu)$ if and only if $g \in L^1(\mu \times \mu)$.

Solution. The function g is a Borel function. Moreover,

$$\int_{\mathbf{R}^{n}\times\mathbf{R}^{n}} |g| d(\mu \times \mu) = \int_{\mathbf{R}^{n}\times\mathbf{R}^{n}} |f(x) - f(y)| d\mu(x) d\mu(y)$$

$$\leq \int_{\mathbf{R}^{n}\times\mathbf{R}^{n}} (|f(x)| + |f(y)|) d\mu(x) d\mu(y)$$

$$\leq \int_{\mathbf{R}^{n}\times\mathbf{R}^{n}} |f(x)| d\mu(x) d\mu(y) + \int_{\mathbf{R}^{n}\times\mathbf{R}^{n}} |f(y)| d\mu(x) d\mu(y)$$

and the Tonelli Theorem gives

$$\int_{\mathbf{R}^n \times \mathbf{R}^n} |g| d(\mu \times \mu) \le 2\mu(\mathbf{R}^n) \int_{\mathbf{R}^n} |f| d\mu.$$

Thus $g \in L^1(\mu \times \mu)$ if $f \in L^1(\mu)$.

Tonelli's Theorem also shows that

$$\int_{\mathbf{R}^n \times \mathbf{R}^n} |g| d(\mu \times \mu) = \int_{\mathbf{R}^n} (\int_{\mathbf{R}^n} |f(x) - f(y)| d\mu(x)) d\mu(y).$$

Therefore, if $g \in L^1(\mu \times \mu)$, then

$$\int_{\mathbf{R}^n} |f(x) - f(y)| d\mu(x) < \infty$$

for μ -almost all $y \in \mathbf{R}^n$. In particular,

$$\int_{\mathbf{R}^n} |f(x) - f(y_0)| d\mu(x) < \infty$$

for an appropriate $y_0 \in \mathbf{R}^n$. Now

$$\int_{\mathbf{R}^n} |f(x)| d\mu(x) \le \int_{\mathbf{R}^n} (|f(x) - f(y_0)| + |f(y_0)|) d\mu(x)$$

$$\le \int_{\mathbf{R}^n} |f(x) - f(y_0)| d\mu(x) + |f(y_0)| \mu(\mathbf{R}^n) < \infty$$

and we conclude that $f \in L^1(\mu)$.

3. a) Suppose $f: \mathbf{R} \to [0, \infty[$ is Lebesgue measurable and $\int_{\mathbf{R}} f dm < \infty.$ Prove that

$$\lim_{\alpha \to \infty} \alpha m(f \ge \alpha) = 0.$$

b) Find a Lebesgue measurable function $f: \mathbf{R} \to [0, \infty[$ such that $f \notin L^1(m)$, $m(f > 0) < \infty$, and

$$\lim_{\alpha \to \infty} \alpha m(f \ge \alpha) = 0.$$

Solution. a) Suppose $\alpha > 0$. Then $f\chi_{\{f \geq \alpha\}} \geq \alpha\chi_{\{f \geq \alpha\}}$ and integration yields

$$\int_{\mathbb{R}} f \chi_{\{f \ge \alpha\}} dm \ge \alpha m (f \ge \alpha).$$

If $(\alpha_n)_{n=1}^{\infty}$ is an arbitrary increasing sequence such that $\alpha_n \to \infty$ as $n \to \infty$,

$$f\chi_{\{f\geq\alpha_n\}}\leq f\in L^1(m),\ n\in\mathbf{N}_+$$

and

$$f\chi_{\{f>\alpha_n\}}\to 0$$

as $n \to \infty$. Therefore by using the Lebesgue Dominated Convergence Theorem it follows that

$$\lim_{n \to \infty} \int_{\mathbf{R}} f \chi_{\{f \ge \alpha_n\}} dm = 0$$

and we get

$$\lim_{n\to\infty} \alpha_n m(f \ge \alpha_n) = 0.$$

Accordingly from this,

$$\lim_{\alpha \to \infty} \alpha m(f \ge \alpha) = 0$$

and we are done.

b) Set $x = g(y) = \frac{1}{y \ln y}$, $y \ge 2$. Define $f(x) = g^{-1}(x)$, $0 < x \le \frac{1}{2 \ln 2}$, and f(x) = 0, $x \notin \left]0, \frac{1}{2 \ln 2}\right]$. Then

$$\int_{\mathbf{R}} f dm = \int_{0 \le y \le f(x)} dx dy = \int_0^\infty m(f \ge y) dy$$
$$= \int_0^2 m(f \ge y) dy + \int_2^\infty m(f \ge y) dy$$
$$= \frac{1}{\ln 2} + \int_2^\infty \frac{dy}{y \ln y} = \frac{1}{\ln 2} + [\ln \ln y]_2^\infty = \infty.$$

Thus $f \notin L^1(m)$ and

$$\lim_{y \to \infty} y m(f \ge y) = \lim_{y \to \infty} \frac{1}{\ln y} = 0.$$

- 4. Let λ be a complex measure and μ a positive measure on the σ -algebra \mathcal{M} such that $\lambda << \mu$. Prove that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|\lambda(E)| < \varepsilon$ whenever $E \in \mathcal{M}$ and $\mu(E) < \delta$.
- 5. Formulate and prove the Lebesgue Monotone Convergence Theorem.