LÖSNINGAR

INTEGRATIONSTEORI (5p)
(GU[MAF440], CTH[TMV100])
Dag, tid: 8 oktober 2004 fm
Hjälpmedel: Inga.

1. Suppose

$$
f_{n}(x)=n|x| e^{-\frac{n x^{2}}{2}}, x \in \mathbf{R}, n \in \mathbf{N}_{+} .
$$

Show that there is no $g \in L^{1}(m)$ such that $f_{n} \leq g$ for all $n \in \mathbf{N}_{+}$.

Solution. We have

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0 \text { all } x \in \mathbf{R}
$$

and

$$
\int_{-\infty}^{\infty} f_{n}(x) d x=[\sqrt{n} x=y]=\int_{-\infty}^{\infty}|y| e^{-\frac{y^{2}}{2}} d y=2 \text { all } n \in \mathbf{N}_{+} .
$$

The Lebesgue Dominated Convergence Theorem now implies that there is no $g \in L^{1}(m)$ such that $\left|f_{n}\right| \leq g$ for all $n \in \mathbf{N}_{+}$. Since $f_{n}=\left|f_{n}\right|$ we are done.
2. Set

$$
f(x)=\lim _{T \rightarrow \infty} \int_{0}^{T} \frac{\sin t}{x+t} d t, x \geq 0
$$

and

$$
g(x)=\frac{f(x)}{\sqrt{x}}, x \geq 0 .
$$

Prove that g is Lebesgue integrable on $[0, \infty[$.

Solution. Let $x \geq 0$. By partial integration

$$
\int_{\frac{\pi}{2}}^{T} \frac{\sin t}{x+t} d t=-\frac{\cos T}{x+T}-\int_{\frac{\pi}{2}}^{T} \frac{\cos t}{(x+t)^{2}} d t
$$

and we get

$$
f(x)=\int_{0}^{\frac{\pi}{2}} \frac{\sin t}{x+t} d t-\int_{\frac{\pi}{2}}^{\infty} \frac{\cos t}{(x+t)^{2}} d t
$$

Note that f is a Borel function by the Tonelli Theorem.
Now

$$
|f(x)| \leq \int_{0}^{\frac{\pi}{2}} \frac{|\sin t|}{t} d t+\int_{\frac{\pi}{2}}^{\infty} \frac{1}{(x+t)^{2}} d t
$$

and since $|\sin t| \leq t$ for $t \geq 0$, we get

$$
|f(x)| \leq \frac{\pi}{2}+\frac{1}{x+\frac{\pi}{2}} \leq \frac{\pi}{2}+\frac{2}{\pi}
$$

Hence

$$
\int_{0}^{1} \frac{|f(x)|}{\sqrt{x}} d x<\infty
$$

Furthermore,

$$
\begin{aligned}
& |f(x)| \leq \int_{0}^{\frac{\pi}{2}} \frac{1}{x} d t+\int_{\frac{\pi}{2}}^{\infty} \frac{1}{(x+t)^{2}} d t \\
& \quad=\frac{\pi}{2 x}+\frac{1}{x+\frac{\pi}{2}} \leq\left(\frac{\pi}{2}+1\right) \frac{1}{x}
\end{aligned}
$$

and it follows that

$$
\int_{1}^{\infty} \frac{|f(x)|}{\sqrt{x}} d x<\infty
$$

Summing up we conclude that g is Lebesgue integrable on $[0, \infty[$.
3. a) Let \mathcal{M} be an algebra of subsets of X and \mathcal{N} an algebra of subsets of Y. Furthermore, let S be the set of all finite unions of sets of the type $A \times B$, where $A \in \mathcal{M}$ and $B \in \mathcal{N}$. Prove that S is an algebra of subsets of $X \times Y$.
b) Assume \mathcal{M} is a σ-algebra of subsets of X and \mathcal{N} a σ-algebra of subsets of Y and let $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu)$ be a finite positive measure space. Prove that to each $E \in \mathcal{M} \otimes \mathcal{N}$ and $\varepsilon>0$ there exists $F \in S$ such that

$$
\mu(E \Delta F)<\varepsilon
$$

Solution. a) The main point in the proof is to show that S is closed under finite intersections. To see this let

$$
E=\cup_{k=1}^{M}\left(A_{k} \times B_{k}\right)
$$

and

$$
F=\cup_{k=1}^{N}\left(C_{k} \times D_{k}\right)
$$

where $A_{1}, \ldots, A_{M}, C_{1}, \ldots, C_{N} \in \mathcal{M}$ and $B_{1}, \ldots, B_{M}, D_{1}, \ldots, D_{N} \in \mathcal{N}$. It is enough to prove that $E \cap F \in S$. But

$$
E \cap F=\underset{\substack{1 \leq i \leq M \\ 1 \leq j \leq N}}{\cup_{1}\left(\left(A_{i} \cap C_{j}\right) \times\left(B_{i} \cap D_{j}\right)\right), ~}
$$

and we are done.
To prove that S is an algebra first note that $\phi \in S$ and that S is closed under finite unions. If E is as above it remains to prove that the complement E^{c} belongs to S. But

$$
\begin{gathered}
E^{c}=\cap_{k=1}^{M}\left(A_{k} \times B_{k}\right)^{c} \\
=\cap_{k=1}^{M}\left(\left(A_{k}^{c} \times Y\right) \cup\left(X \times B_{k}^{c}\right)\right)
\end{gathered}
$$

and it follows $E^{c} \in S$.
b) Let Σ be the class of all $E \in \mathcal{M} \otimes \mathcal{N}$ for which the property in b) holds. Clearly, $\phi \in \Sigma$. Now let $E \in \Sigma$. If $F \in S$, then $F^{c} \in S$ and $E \Delta F=E^{c} \Delta F^{c}$. Hence $E^{c} \in \Sigma$.

Finally, let $E_{i} \in \Sigma, i \in \mathbf{N}_{+}$. We shall prove that $E=\cup_{i=1}^{\infty} E_{i} \in \Sigma$. To this end let $\varepsilon>0$ be arbitrary and choose $F_{i} \in S$ such that

$$
\mu\left(E_{i} \Delta F_{i}\right)<2^{-i} \varepsilon
$$

for all $i \in \mathbf{N}_{+}$. Since

$$
\begin{gathered}
E \Delta\left(\cup_{i=1}^{\infty} F_{i}\right) \subseteq \cup_{i=1}^{\infty} E_{i} \Delta F_{i} \\
\mu\left(E \Delta\left(\cup_{i=1}^{\infty} F_{i}\right) \leq \Sigma_{i=1}^{\infty} \mu\left(E_{i} \Delta F_{i}\right)<\varepsilon\right.
\end{gathered}
$$

Now

$$
E \Delta\left(\cup_{i=1}^{\infty} F_{i}\right)=\left(\cap_{i=1}^{\infty}\left(E \cap F_{i}^{c}\right)\right) \cup\left(E^{c} \cap\left(\cup_{i=1}^{\infty} F_{i}\right)\right)
$$

and since μ is a finite positive measure it follows that

$$
\mu\left(\left(\cap_{i=1}^{n}\left(E \cap F_{i}^{c}\right)\right) \cup\left(E^{c} \cap\left(\cup_{i=1}^{\infty} F_{i}\right)\right)\right)<\varepsilon
$$

if n is sufficiently large. Hence

$$
\mu\left(E \Delta\left(\cup_{i=1}^{n} F_{i}\right)\right) \leq \mu\left(\left(\cap_{i=1}^{n}\left(E \cap F_{i}^{c}\right)\right) \cup\left(E^{c} \cap\left(\cup_{i=1}^{n} F_{i}\right)\right)\right)<\varepsilon
$$

if n is large, which proves that $\cup_{i=1}^{\infty} E_{i} \in \Sigma$. Thus Σ is a σ-algebra contained in $\mathcal{M} \otimes \mathcal{N}$ and since Σ contains all measurable rectangles $\Sigma=\mathcal{M} \otimes \mathcal{N}$.
4. Formulate and prove the Fatous Lemma.
5. Let \mathcal{C} be a collection of open balls and set $V=\cup_{B \in \mathcal{C}} B$. Prove that to each $c<m_{n}(V)$ there exist pairwise disjoint $B_{1}, \ldots, B_{k} \in \mathcal{C}$ such that

$$
\sum_{i=1}^{k} m_{n}\left(B_{i}\right)>3^{-n} c .
$$

