LÖSNINGAR INTEGRATIONSTEORI (5p) (GU[MAF440],CTH[TMV100]) Dag, tid: 8 oktober 2004 fm Hjälpmedel: Inga.

1. Suppose

$$f_n(x) = n \mid x \mid e^{-\frac{nx^2}{2}}, \ x \in \mathbf{R}, \ n \in \mathbf{N}_+.$$

Show that there is no $g \in L^1(m)$ such that $f_n \leq g$ for all $n \in \mathbf{N}_+$.

Solution. We have

$$\lim_{n \to \infty} f_n(x) = 0 \text{ all } x \in \mathbf{R}$$

and

$$\int_{-\infty}^{\infty} f_n(x) dx = \left[\sqrt{n}x = y\right] = \int_{-\infty}^{\infty} |y| e^{-\frac{y^2}{2}} dy = 2 \text{ all } n \in \mathbf{N}_+.$$

The Lebesgue Dominated Convergence Theorem now implies that there is no $g \in L^1(m)$ such that $|f_n| \leq g$ for all $n \in \mathbb{N}_+$. Since $f_n = |f_n|$ we are done.

2. Set

$$f(x) = \lim_{T \to \infty} \int_0^T \frac{\sin t}{x+t} dt, \ x \ge 0$$

and

$$g(x) = \frac{f(x)}{\sqrt{x}}, \ x \ge 0.$$

Prove that g is Lebesgue integrable on $[0, \infty[$.

Solution. Let $x \ge 0$. By partial integration

$$\int_{\frac{\pi}{2}}^{T} \frac{\sin t}{x+t} dt = -\frac{\cos T}{x+T} - \int_{\frac{\pi}{2}}^{T} \frac{\cos t}{(x+t)^2} dt$$

and we get

$$f(x) = \int_0^{\frac{\pi}{2}} \frac{\sin t}{x+t} dt - \int_{\frac{\pi}{2}}^{\infty} \frac{\cos t}{(x+t)^2} dt.$$

Note that f is a Borel function by the Tonelli Theorem.

Now

$$|f(x)| \le \int_0^{\frac{\pi}{2}} \frac{|\sin t|}{t} dt + \int_{\frac{\pi}{2}}^{\infty} \frac{1}{(x+t)^2} dt$$

and since $|\sin t| \le t$ for $t \ge 0$, we get

$$|f(x)| \le \frac{\pi}{2} + \frac{1}{x + \frac{\pi}{2}} \le \frac{\pi}{2} + \frac{2}{\pi}.$$

Hence

$$\int_0^1 \frac{\mid f(x) \mid}{\sqrt{x}} dx < \infty.$$

Furthermore,

$$|f(x)| \leq \int_0^{\frac{\pi}{2}} \frac{1}{x} dt + \int_{\frac{\pi}{2}}^{\infty} \frac{1}{(x+t)^2} dt$$
$$= \frac{\pi}{2x} + \frac{1}{x+\frac{\pi}{2}} \leq (\frac{\pi}{2}+1)\frac{1}{x}$$

and it follows that

$$\int_{1}^{\infty} \frac{\mid f(x) \mid}{\sqrt{x}} dx < \infty.$$

Summing up we conclude that g is Lebesgue integrable on $[0, \infty]$.

3. a) Let \mathcal{M} be an algebra of subsets of X and \mathcal{N} an algebra of subsets of Y. Furthermore, let S be the set of all finite unions of sets of the type $A \times B$, where $A \in \mathcal{M}$ and $B \in \mathcal{N}$. Prove that S is an algebra of subsets of $X \times Y$.

b) Assume \mathcal{M} is a σ -algebra of subsets of X and \mathcal{N} a σ -algebra of subsets of Y and let $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu)$ be a finite positive measure space. Prove that to each $E \in \mathcal{M} \otimes \mathcal{N}$ and $\varepsilon > 0$ there exists $F \in S$ such that

$$\mu(E\Delta F) < \varepsilon.$$

Solution. a) The main point in the proof is to show that S is closed under finite intersections. To see this let

$$E = \bigcup_{k=1}^{M} (A_k \times B_k)$$

and

$$F = \bigcup_{k=1}^{N} (C_k \times D_k)$$

where $A_1, ..., A_M, C_1, ..., C_N \in \mathcal{M}$ and $B_1, ..., B_M, D_1, ..., D_N \in \mathcal{N}$. It is enough to prove that $E \cap F \in S$. But

$$E \cap F = \bigcup_{\substack{1 \le i \le M \\ 1 \le j \le N}} ((A_i \cap C_j) \times (B_i \cap D_j))$$

and we are done.

To prove that S is an algebra first note that $\phi \in S$ and that S is closed under finite unions. If E is as above it remains to prove that the complement E^c belongs to S. But

$$E^{c} = \bigcap_{k=1}^{M} (A_{k} \times B_{k})^{c}$$
$$= \bigcap_{k=1}^{M} ((A_{k}^{c} \times Y) \cup (X \times B_{k}^{c}))$$

and it follows $E^c \in S$.

b) Let Σ be the class of all $E \in \mathcal{M} \otimes \mathcal{N}$ for which the property in b) holds. Clearly, $\phi \in \Sigma$. Now let $E \in \Sigma$. If $F \in S$, then $F^c \in S$ and $E\Delta F = E^c \Delta F^c$. Hence $E^c \in \Sigma$.

Finally, let $E_i \in \Sigma$, $i \in \mathbf{N}_+$. We shall prove that $E = \bigcup_{i=1}^{\infty} E_i \in \Sigma$. To this end let $\varepsilon > 0$ be arbitrary and choose $F_i \in S$ such that

$$\mu(E_i \Delta F_i) < 2^{-i} \varepsilon$$

for all $i \in \mathbf{N}_+$. Since

$$E\Delta(\cup_{i=1}^{\infty}F_i) \subseteq \bigcup_{i=1}^{\infty}E_i\Delta F_i,$$
$$\mu(E\Delta(\bigcup_{i=1}^{\infty}F_i) \le \sum_{i=1}^{\infty}\mu(E_i\Delta F_i) < \varepsilon.$$

Now

$$E\Delta(\bigcup_{i=1}^{\infty}F_i) = (\bigcap_{i=1}^{\infty}(E\cap F_i^c)) \cup (E^c \cap (\bigcup_{i=1}^{\infty}F_i))$$

and since μ is a finite positive measure it follows that

$$\mu((\cap_{i=1}^{n}(E\cap F_{i}^{c}))\cup(E^{c}\cap(\cup_{i=1}^{\infty}F_{i})))<\varepsilon$$

if n is sufficiently large. Hence

$$\mu(E\Delta(\bigcup_{i=1}^{n}F_{i})) \le \mu((\bigcap_{i=1}^{n}(E\cap F_{i}^{c})) \cup (E^{c}\cap(\bigcup_{i=1}^{n}F_{i}))) < \varepsilon$$

if n is large, which proves that $\bigcup_{i=1}^{\infty} E_i \in \Sigma$. Thus Σ is a σ -algebra contained in $\mathcal{M} \otimes \mathcal{N}$ and since Σ contains all measurable rectangles $\Sigma = \mathcal{M} \otimes \mathcal{N}$.

4. Formulate and prove the Fatous Lemma.

5. Let \mathcal{C} be a collection of open balls and set $V = \bigcup_{B \in \mathcal{C}} B$. Prove that to each $c < m_n(V)$ there exist pairwise disjoint $B_1, ..., B_k \in \mathcal{C}$ such that

$$\sum_{i=1}^k m_n(B_i) > 3^{-n}c.$$