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1. Suppose

Show that f is differentiable.

Solution. By partial integration,
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Let a > 0. It is enough to prove that f(t¢) is differentiable for ¢ > a. We
have

and it follows that
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The theorem about interchanging a derivative and an integral now yields
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for each t > a. This proves that f is differentiable.

2. Suppose a,b € R and a < b. Show that if f and g are absolutely continuous
functions on [a, b] , so is their product fg.



Solution. The functions f and g are continuous. Set M; = maxg<,<p | f(2) |

and My = maX,<.<p | 9(2) | -
Choose € > 0. There exists a 6 > 0 such that, if
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It follows that fg is absolutely continuous.
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3. Let f:[0,7] — R be a continuous function. Compute the limit
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(recall that the concavity of sin|[07%] yields sinv > %, 0<wv<7%). Since
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the Lebesgue Dominated Convergence Theorem implies that

lim n/O% ft)e msmidt = /OOO f(0)e *dx = £(0).
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Furthermore
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and the first part of the solution proves that
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From the above we now conclude that

lim 7 /0 " F)e s = £0) + f(n).
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4. Let (X, M) be a measurable space and f : X — [0,00] a measurable
function. Show that there exist simple measurable functions ¢, : X —
[0,00[, n € N, such that ¢, T f.

5. Let f € L'(m,). Use the Maximal Theorem to conclude that
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