LÖSNINGAR

INTEGRATIONSTEORI (5p)
(GU[MAF440], $\mathbf{C T H}[T M V 100])$
Dag, tid: 20 mars 2004, fm
Hjälpmedel: Inga.

1. Suppose

$$
f(t)=\lim _{r \rightarrow \infty} \int_{0}^{r} \frac{\cos x}{t+x} d x, t>0 .
$$

Show that f is differentiable.

Solution. By partial integration,

$$
\int_{0}^{r} \frac{\cos x}{t+x} d x=\frac{\sin r}{t+r}+\int_{0}^{r} \frac{\sin x}{(t+x)^{2}} d x
$$

and it follows that

$$
f(t)=\int_{0}^{\infty} \frac{\sin x}{(t+x)^{2}} d x
$$

Let $a>0$. It is enough to prove that $f(t)$ is differentiable for $t>a$. We have

$$
\sup _{t>a}\left|\frac{\partial}{\partial t} \frac{\sin x}{(t+x)^{2}}\right| \leq \frac{2}{(a+x)^{3}}, x>0
$$

and

$$
\int_{0}^{\infty} \frac{d x}{(a+x)^{3}}<\infty
$$

The theorem about interchanging a derivative and an integral now yields

$$
f^{\prime}(t)=\int_{0}^{\infty} \frac{\partial}{\partial t} \frac{\sin x}{(t+x)^{2}} d x=-\int_{0}^{\infty} \frac{2 \sin x}{(t+x)^{3}} d x
$$

for each $t>a$. This proves that f is differentiable.
2. Suppose $a, b \in \mathbf{R}$ and $a<b$. Show that if f and g are absolutely continuous functions on $[a, b]$, so is their product $f g$.

Solution. The functions f and g are continuous. Set $M_{f}=\max _{a \leq x \leq b}|f(x)|$ and $M_{g}=\max _{a \leq x \leq b}|g(x)|$.

Choose $\varepsilon>0$. There exists a $\delta>0$ such that, if

$$
a \leq a_{1}<b_{1} \leq a_{2}<b_{2} \leq \ldots<a_{n}<b_{n} \leq b
$$

and

$$
\Sigma_{k=1}^{n}\left|b_{k}-a_{k}\right|<\delta
$$

then

$$
\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\frac{1}{2} \frac{\varepsilon}{1+M_{g}}
$$

and

$$
\Sigma_{k=1}^{n}\left|g\left(b_{k}\right)-g\left(a_{k}\right)\right|<\frac{1}{2} \frac{\varepsilon}{1+M_{f}} .
$$

But then

$$
\begin{gathered}
\sum_{k=1}^{n}\left|f\left(b_{k}\right) g\left(b_{k}\right)-f\left(a_{k}\right) g\left(a_{k}\right)\right| \\
=\sum_{k=1}^{n}\left|\left(f\left(b_{k}\right)-f\left(a_{k}\right)\right) g\left(b_{k}\right)+f\left(a_{k}\right)\left(g\left(b_{k}\right)-g\left(a_{k}\right)\right)\right| \\
\leq \Sigma_{k=1}^{n}\left|\left(f\left(b_{k}\right)-f\left(a_{k}\right)\right) g\left(b_{k}\right)\right|+\sum_{k=1}^{n}\left|f\left(a_{k}\right)\left(g\left(b_{k}\right)-g\left(a_{k}\right)\right)\right| \\
\leq M_{g} \Sigma_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|+M_{f} \Sigma_{k=1}^{n}\left|g\left(b_{k}\right)-g\left(a_{k}\right)\right| \\
<\frac{1}{2} \frac{\varepsilon M_{g}}{1+M_{g}}+\frac{1}{2} \frac{\varepsilon M_{f}}{1+M_{f}}<\varepsilon .
\end{gathered}
$$

It follows that $f g$ is absolutely continuous.
3. Let $f:[0, \pi] \rightarrow \mathbf{R}$ be a continuous function. Compute the limit

$$
\lim _{n \rightarrow \infty} n \int_{0}^{\pi} f(t) e^{-n \sin t} d t
$$

Solution. We have

$$
n \int_{0}^{\frac{\pi}{2}} f(t) e^{-n \sin t} d t=\int_{0}^{\frac{n \pi}{2}} f\left(\frac{x}{n}\right) e^{-n \sin \frac{x}{n}} d x .
$$

Here

$$
\left|\chi_{\left[0, \frac{n \pi}{2}\right]}(x) f\left(\frac{x}{n}\right) e^{-n \sin \frac{x}{n}}\right| \leq(\max |f|) e^{-\frac{2}{\pi} x}
$$

(recall that the concavity of $\sin _{\left[\left[0, \frac{\pi}{2}\right]\right.}$ yields $\sin v \geq \frac{2 v}{\pi}, 0 \leq v \leq \frac{\pi}{2}$). Since

$$
\int_{0}^{\infty} e^{-\frac{2}{\pi} x} d x<\infty
$$

the Lebesgue Dominated Convergence Theorem implies that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{\frac{\pi}{2}} f(t) e^{-n \sin t} d t=\int_{0}^{\infty} f(0) e^{-x} d x=f(0)
$$

Furthermore

$$
n \int_{\frac{\pi}{2}}^{\pi} f(t) e^{-n \sin t} d t=n \int_{0}^{\frac{\pi}{2}} f(\pi-t) e^{-n \sin t} d t
$$

and the first part of the solution proves that

$$
\lim _{n \rightarrow \infty} n \int_{\frac{\pi}{2}}^{\pi} f(t) e^{-n \sin t} d t=f(\pi)
$$

From the above we now conclude that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{\pi} f(t) e^{-n \sin t} d t=f(0)+f(\pi)
$$

4. Let (X, \mathcal{M}) be a measurable space and $f: X \rightarrow[0, \infty]$ a measurable function. Show that there exist simple measurable functions $\varphi_{n}: X \rightarrow$ $\left[0, \infty\left[, n \in \mathbf{N}_{+}\right.\right.$, such that $\varphi_{n} \uparrow f$.
5. Let $f \in L^{1}\left(m_{n}\right)$. Use the Maximal Theorem to conclude that

$$
\lim _{r \downarrow 0} \frac{1}{m_{n}(B(x, r))} \int_{B(x, r)} f(y) d y=f(x) \text { a.e. }\left[m_{n}\right]
$$

