LÖSNINGAR INTEGRATIONSTEORI (5p) (GU[MAF440],CTH[TMV100]) Dag, tid: 14 februari 2004, fm Hjälpmedel: Inga.

1. Suppose

$$f(t) = \int_0^\infty e^{-tx} \frac{\ln(1+x)}{1+x} dx, \ t > 0.$$

a) Show that $\int_0^\infty f(t)dt < \infty$.

b) Show that f is infinitely many times differentiable.

Solution. a) The function

$$e^{-tx} \frac{\ln(1+x)}{1+x}, \ t > 0, \ x \ge 0$$

is non-negative and continuous. Thus $f \geq 0$ and, moreover, the Tonelli Theorem yields

$$\int_0^\infty f(t)dt = \int_0^\infty \left\{ \int_0^\infty e^{-tx} \frac{\ln(1+x)}{1+x} dt \right\} dx$$
$$= \int_0^\infty \frac{\ln(1+x)}{x(1+x)} dx.$$

Here

$$\lim_{x \to 0} \frac{\ln(1+x)}{x(1+x)} = 1$$

and

$$0 \le \frac{\ln(1+x)}{x(1+x)} \le \frac{1}{x^{3/2}}$$
 if x large enough.

Since $\int_1^\infty \frac{dx}{x^{3/2}} < \infty$ Part a) is proved.

b) Define

$$d\mu = \frac{\ln(1+x)}{1+x} dx$$
 on $[0,\infty[$

and observe that μ is a non-negative measure such that

$$f(t) = \int_0^\infty e^{-tx} d\mu(x), \ t > 0.$$

Now choose a > 0. It is enough to prove that f is infinitely many times differentiable restricted to the interval $]a, \infty[$. For any fixed $n \in \mathbf{N}_+$, the function

$$h_n(x) = x^n e^{-ax}, \ x \ge 0$$

belongs to $L^1(\mu)$ since

$$0 \le x^n e^{-ax} \frac{\ln(1+x)}{1+x} \le e^{-\frac{a}{2}x} \text{ if } x \text{ large enough.}$$

Since

$$\left|\frac{\partial}{\partial t}e^{-tx}\right| \le h_1(x), \ t > a, \ 0 \le x < \infty$$

it follows from the theorem about interchanging a derivative with an integral that ∞

$$f'(t) = \int_0^\infty -xe^{-tx}d\mu(x), \ t > a.$$

In a similar way

$$\left| \frac{\partial^2}{\partial t^2} e^{-tx} \right| \le h_2(x), \ t > a, \ 0 \le x < \infty$$

and it follows that

$$f''(t) = \int_0^\infty x^2 e^{-tx} d\mu(x), \ t > a.$$

By repetition (or mathematical induction), we now conclude that f is infinitely many times differentiable restricted to the interval $]a, \infty[$.

2. Suppose α is a positive real number and f a function on [0,1] such that f(0) = 0 and $f(x) = x^{\alpha} \sin \frac{1}{x}$, $0 < x \leq 1$. Prove that f is absolutely continuous if and only if $\alpha > 1$.

2

Solution. Recall that f is absolutely continuous if and only if the following properties hold:

(i) f'(x) exists for $m_{0,1}$ -almost all $x \in [0, 1]$ (ii) $f' \in L^1(m_{0,1})$ (iii) $f(x) = f(0) + \int_0^x f'(t)dt, \ 0 \le x \le 1$. In this case

$$f'(x) = \alpha x^{\alpha - 1} \sin \frac{1}{x} + x^{\alpha - 2} \cos \frac{1}{x}$$
 if $x > 0$.

Here $| \alpha x^{\alpha-1} \sin \frac{1}{x} | \leq \alpha x^{\alpha-1}$ and we get

$$\alpha x^{\alpha-1} \sin \frac{1}{x} \in L^1(m_{0,1}).$$

Moreover,

$$\int_0^1 |x^{\alpha-2}\cos\frac{1}{x}| dx = \left[t = \frac{1}{x}\right]$$
$$=_{def} \int_1^\infty t^{-\alpha} |\cos t| dt =_{def} I_\alpha.$$

Here $I_{\alpha} < \infty$ if $\alpha > 1$. Moreover, if $\alpha \ge 1$

$$I_{\alpha} \ge \int_{1}^{\infty} t^{-1} |\cos t| dt \ge \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \int_{n2\pi}^{n2\pi + \frac{\pi}{4}} t^{-1} dt$$
$$= \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \ln(1 + \frac{1}{8n}) = \infty$$

since

$$\ln(1+\frac{1}{8n}) \ge \frac{1}{16n}$$
 if n large.

Thus

$$x^{\alpha-2}\cos\frac{1}{x} \in L^1(m_{0,1})$$
 iff $\alpha > 1$

and

$$f' \in L^1(m_{0,1})$$
 iff $\alpha > 1$.

It follows that the function f is not absolutely continuous for $\alpha \leq 1$. If $\alpha > 1$ and $0 < x \leq 1$,

$$f(x) = \delta^{\alpha} \sin \frac{1}{\delta} + \int_{\delta}^{x} f'(t) dt$$
, all $0 < \delta \le 1$

and by letting $\delta \to 0$

$$f(x) = f(0) + \int_0^x f'(t)dt.$$

It follows that f is absolutely continuous for every $\alpha > 1$.

3. Suppose $\mu : \mathcal{M} \to \mathbf{C}$ is a complex measure and $f, g : X \to \mathbf{R}$ measurable functions. Show that

$$\mid \mu(f \in A) - \mu(g \in A) \mid \leq \mid \mu \mid (f \neq g)$$

for every $A \in \mathcal{R}$.

Solution. Below $\{f \in A, g \in B\}$) means $\{f \in A\} \cap \{g \in B\}$. We have

$$\mu(f \in A) = \mu(f \in A, \ g \in A) + \mu(f \in A, \ g \notin A)$$

and

$$\mu(g \in A) = \mu(g \in A, \ f \in A) + \mu(g \in A, \ f \notin A)$$

and, accordingly,

$$\mu(f\in A)-\mu(g\in A)=\mu(f\in A,\ g\notin A)-\mu(g\in A,\ f\notin A).$$

Hence

$$| \mu(f \in A) - \mu(g \in A) | \leq | \mu(f \in A, \ g \notin A) | + | \mu(g \in A, \ f \notin A) |$$
$$\leq | \mu | (f \in A, \ g \notin A) + | \mu | (g \in A, \ f \notin A)$$
$$= | \mu | (\{f \in A, \ g \notin A\} \cup \{g \in A, \ f \notin A\}) \leq | \mu | (f \neq g).$$

- 4. Suppose (X, \mathcal{M}, μ) is a positive measure space. Prove the following results: a) If $f_n \to f$ in measure and $f_n \to g$ in measure, then f = g a.e. $[\mu]$. b) Convergence in $L^1(\mu)$ implies convergence in measure.
- 5. Formulate and prove the Lebesgue Monotone Convergence Theorem.