LÖSNINGAR

INTEGRATIONSTEORI (5p)
(GU[MAF440], $\mathbf{C T H}[T M V 100])$
Dag, tid: 14 februari 2004, fm
Hjälpmedel: Inga.

1. Suppose

$$
f(t)=\int_{0}^{\infty} e^{-t x} \frac{\ln (1+x)}{1+x} d x, t>0
$$

a) Show that $\int_{0}^{\infty} f(t) d t<\infty$.
b) Show that f is infinitely many times differentiable.

Solution. a) The function

$$
e^{-t x} \frac{\ln (1+x)}{1+x}, t>0, x \geq 0
$$

is non-negative and continuous. Thus $f \geq 0$ and, moreover, the Tonelli Theorem yields

$$
\begin{aligned}
\int_{0}^{\infty} f(t) d t & =\int_{0}^{\infty}\left\{\int_{0}^{\infty} e^{-t x} \frac{\ln (1+x)}{1+x} d t\right\} d x \\
& =\int_{0}^{\infty} \frac{\ln (1+x)}{x(1+x)} d x
\end{aligned}
$$

Here

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x(1+x)}=1
$$

and

$$
0 \leq \frac{\ln (1+x)}{x(1+x)} \leq \frac{1}{x^{3 / 2}} \text { if } x \text { large enough. }
$$

Since $\int_{1}^{\infty} \frac{d x}{x^{3 / 2}}<\infty$ Part a) is proved.
b) Define

$$
d \mu=\frac{\ln (1+x)}{1+x} d x \text { on }[0, \infty[
$$

and observe that μ is a non-negative measure such that

$$
f(t)=\int_{0}^{\infty} e^{-t x} d \mu(x), t>0
$$

Now choose $a>0$. It is enough to prove that f is infinitely many times differentiable restricted to the interval $] a, \infty\left[\right.$. For any fixed $n \in \mathbf{N}_{+}$, the function

$$
h_{n}(x)=x^{n} e^{-a x}, x \geq 0
$$

belongs to $L^{1}(\mu)$ since

$$
0 \leq x^{n} e^{-a x} \frac{\ln (1+x)}{1+x} \leq e^{-\frac{a}{2} x} \text { if } x \text { large enough. }
$$

Since

$$
\left|\frac{\partial}{\partial t} e^{-t x}\right| \leq h_{1}(x), t>a, 0 \leq x<\infty
$$

it follows from the theorem about interchanging a derivative with an integral that

$$
f^{\prime}(t)=\int_{0}^{\infty}-x e^{-t x} d \mu(x), t>a
$$

In a similar way

$$
\left|\frac{\partial^{2}}{\partial t^{2}} e^{-t x}\right| \leq h_{2}(x), t>a, 0 \leq x<\infty
$$

and it follows that

$$
f^{\prime \prime}(t)=\int_{0}^{\infty} x^{2} e^{-t x} d \mu(x), t>a
$$

By repetition (or mathematical induction), we now conclude that f is infinitely many times differentiable restricted to the interval $] a, \infty[$.
2. Suppose α is a positive real number and f a function on $[0,1]$ such that $f(0)=0$ and $f(x)=x^{\alpha} \sin \frac{1}{x}, 0<x \leq 1$. Prove that f is absolutely continuous if and only if $\alpha>1$.

Solution. Recall that f is absolutely continuous if and only if the following properties hold:
(i) $f^{\prime}(x)$ exists for $m_{0,1}$-almost all $x \in[0,1]$
(ii) $f^{\prime} \in L^{1}\left(m_{0,1}\right)$
(iii) $f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t, 0 \leq x \leq 1$.

In this case

$$
f^{\prime}(x)=\alpha x^{\alpha-1} \sin \frac{1}{x}+x^{\alpha-2} \cos \frac{1}{x} \text { if } x>0 .
$$

Here $\left|\alpha x^{\alpha-1} \sin \frac{1}{x}\right| \leq \alpha x^{\alpha-1}$ and we get

$$
\alpha x^{\alpha-1} \sin \frac{1}{x} \in L^{1}\left(m_{0,1}\right) .
$$

Moreover,

$$
\begin{aligned}
& \int_{0}^{1}\left|x^{\alpha-2} \cos \frac{1}{x}\right| d x=\left[t=\frac{1}{x}\right] \\
& =d_{\text {def }} \int_{1}^{\infty} t^{-\alpha}|\cos t| d t==_{\text {def }} I_{\alpha} .
\end{aligned}
$$

Here $I_{\alpha}<\infty$ if $\alpha>1$. Morover, if $\alpha \geq 1$

$$
\begin{gathered}
I_{\alpha} \geq \int_{1}^{\infty} t^{-1}|\cos t| d t \geq \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \int_{n 2 \pi}^{n 2 \pi+\frac{\pi}{4}} t^{-1} d t \\
=\frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \ln \left(1+\frac{1}{8 n}\right)=\infty
\end{gathered}
$$

since

$$
\ln \left(1+\frac{1}{8 n}\right) \geq \frac{1}{16 n} \text { if } n \text { large. }
$$

Thus

$$
x^{\alpha-2} \cos \frac{1}{x} \in L^{1}\left(m_{0,1}\right) \text { iff } \alpha>1
$$

and

$$
f^{\prime} \in L^{1}\left(m_{0,1}\right) \text { iff } \alpha>1 .
$$

It follows that the function f is not absolutely continuous for $\alpha \leq 1$. If $\alpha>1$ and $0<x \leq 1$,

$$
f(x)=\delta^{\alpha} \sin \frac{1}{\delta}+\int_{\delta}^{x} f^{\prime}(t) d t, \text { all } 0<\delta \leq 1
$$

and by letting $\delta \rightarrow 0$

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t .
$$

It follows that f is absolutely continuous for every $\alpha>1$.
3. Suppose $\mu: \mathcal{M} \rightarrow \mathbf{C}$ is a complex measure and $f, g: X \rightarrow \mathbf{R}$ measurable functions. Show that

$$
|\mu(f \in A)-\mu(g \in A)| \leq|\mu|(f \neq g)
$$

for every $A \in \mathcal{R}$.

Solution. Below $\{f \in A, g \in B\}$) means $\{f \in A\} \cap\{g \in B\}$. We have

$$
\mu(f \in A)=\mu(f \in A, g \in A)+\mu(f \in A, g \notin A)
$$

and

$$
\mu(g \in A)=\mu(g \in A, f \in A)+\mu(g \in A, f \notin A)
$$

and, accordingly,

$$
\mu(f \in A)-\mu(g \in A)=\mu(f \in A, g \notin A)-\mu(g \in A, f \notin A)
$$

Hence

$$
\begin{gathered}
|\mu(f \in A)-\mu(g \in A)| \leq|\mu(f \in A, g \notin A)|+|\mu(g \in A, f \notin A)| \\
\leq|\mu|(f \in A, g \notin A)+|\mu|(g \in A, f \notin A) \\
=|\mu|(\{f \in A, g \notin A\} \cup\{g \in A, f \notin A\}) \leq|\mu|(f \neq g) .
\end{gathered}
$$

4. Suppose (X, \mathcal{M}, μ) is a positive measure space. Prove the following results:
a) If $f_{n} \rightarrow f$ in measure and $f_{n} \rightarrow g$ in measure, then $f=g$ a.e. $[\mu]$.
b) Convergence in $L^{1}(\mu)$ implies convergence in measure.
5. Formulate and prove the Lebesgue Monotone Convergence Theorem.
