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Aids: Just pen, ruler and eraser.
Teacher on duty: Emil Gustavsson, 0703-088304

Note: Write your name and personal number on the cover.
Write your code on every sheet you hand in.
Only write on one page of each sheet. Do not use red pen.
Do not answer more than one question per page.
State your methodology carefully. Write legibly.
Questions are not numbered by difficulty.
Sort your solutions by the order of the questions.
Mark on the cover the questions you have answered.
Count the number of sheets you hand in and fill in the number on the cover.
To pass requires 10 points.

1. Show that the following boundary value problem

u′′(x) − u(x) + 1

2
(1 + u(x2)) = 0, 0 ≤ x ≤ 1,

u(0) = u′(0) = 0,
u ∈ C2([0, 1])

has a unique solution.

(4p)

2. For f ∈ L2([0, 1]) set

Tf(x) =

∫
1

√
x

1

x + t
f(t) dt, 0 ≤ x ≤ 1.

Show that T is a bounded linear operator on L2([0, 1]) and calculate T ∗. Is T a compact
operator?

(4p)

3. Let (en)∞n=1
be an ON-basis in a complex Hilbert space H with norm ‖ · ‖. Assume that

(fn)∞n=1
is a sequence in H with the properties

(a) supn=1,2,3,... ‖fn‖ < ∞

(b) fn ∈ {e1, e2, . . . , en}
⊥ for all n.

Show that (fn)∞n=1
converges weakly in H.

(4p)



4. Formulate and prove the Riesz representation theorem.

(5p)

5. State and prove1 the orthogonal projection theorem.

(4p)

6. Prove the following statements:

(a) For p, r ∈ [1,∞) and f ∈ C([0, 1] × [0, 1]) define

‖f‖Lr,p = (

∫
1

0

(

∫
1

0

|f(x, y)|p dy)
r

p dx)
1

r .

Then ‖ · ‖Lr,p defines a norm on C([0, 1] × [0, 1]).

(b) For p ∈ (0,∞) and f ∈ C([0, 1]) define

‖f‖Lp = (

∫
1

0

|f(x)|p dx)
1

p .

If ‖ · ‖Lp defines a norm on C([0, 1]) then2 p ≥ 1.

(4p)

For information on the announcement of results see the course homepage where also
solutions to the problems will be presented.

GOOD LUCK! PK

1If the “closest point property-proposition” is used it should be stated and proved.
2Hint: The inequality (a + b)p < ap + bp for a, b > 0 and 0 < p < 1 might be useful.
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