Wireless and Photonic System Engineering SSY085

 2010-10-18, 14.00-18.00Teachers in charge:
Magnus Karlsson, phone 772 1590, email: magnus.karlsson@chalmers.se
Christian Fager, phone 772 5047, email: christian.fager@chalmers.se
Aids: Open book examination. Any printed material and calculator of choice is allowed. Communication devices (computers, mobile phones etc) are not allowed.

Examination checking: Friday Nov. $5^{\text {th }}, 12^{00}-13^{00}$ in room A604 at MC2
Convince yourself that you have understood the problem before you get started. Constructive and valuable gambits will also give points. If information is lacking in the description of the task, you must yourself introduce technical plausible assumptions. Make sure you clearly state such assumptions.
Grades: $3: \geq 24,4: \geq 36,5: \geq 48$

1. Radio over Fiber (RoF) systems are often used to extend the coverage of wireless systems in dense areas with a lot of end users by connecting simple multiple wireless access points through a fiber link, as illustrated in the schematic below.

You should now use RoF technology to design a system for bi-directional distribution of mobile communication signals between one central unit and 10 wireless access points across the periphery of a large sports arena $(500 \mathrm{~m} \times 500 \mathrm{~m})$.

The system should be designed to provide separate 5 MHz channels for up-link and down-link between each of the ten access points and the central unit. Regular mobile phones support the access points and need not to be included in the design.

To get full marks you must present block diagrams, component choices, and design calculations for the optical and microwave parts of the system. It is important to reduce the cost and energy consumption, so the power, amplification, and complexity in each block should be minimized. Use realistic assumptions where needed.
2. The figure below illustrates a 3.5 GHz super heterodyne receiver block diagram. The receiver will be used in an urban environment and should support a bitrate of $100 \mathrm{Mbit} / \mathrm{s} @ \mathrm{BER}=10^{-5}$ using 64-QAM modulation format.

a) Assign suitable values for the following parameters in the block diagram: $f_{L O}, f_{I F}, B W_{\mathrm{IF}}, B W_{\mathrm{RF}}$. All values must be carefully motivated. (3p)
b) Calculate the spurious free dynamic range of the receiver (you may assume lossless filters). Use this result to calculate the IF amplifier (VGA) gain variation required ($G_{I F, \text { min }}$ and $G_{I F, m a x}$) when the demodulator requires a fixed input power of 0 dBm . (4p)
c) Estimate the ratio between the maximum and minimum range between the transmitter and the receiver $\left(R_{\max } / R_{\min }\right)$. The transmitter output power is fixed. (3p)
3. Multi-channel transmitters can be used reduce cost in cellular wireless systems. You should now consider a cellular wireless system in dense urban area with the following specifications:

Bitrate/channel: 10 Mbps (QPSK), $\mathrm{BER}<10^{-5}$
Outage probability: $<5 \%$
Receiver noise figure: 5 dB
How many channels can a single 1 GHz base station serve within a cell radius of 1 km if the total transmitted power is limited to 100 W ? You may assume a base station antenna gain of 15 dB at a height of 20 m .
(10 points)
4. A $40 \mathrm{~Gb} / \mathrm{s}$ OOK optical signal should be transmitted over an SMF with a loss of 0.2 $\mathrm{dB} / \mathrm{km}$. The transmitter supplies 0 dBm of (average) power. The receiver consists of a pin diode with responsivity $\mathrm{R}=0.8 \mathrm{~A} / \mathrm{W}$, and you require a $\mathrm{BER}<10^{-9}$. What is the attenuation-limited distance if you use
a) no optical amplifiers at all, (5p)
b) a preamplified receiver, where an EDFA with a gain of 20 dB and a noise figure of 6 dB is used directly before the detector? (5p)

Solutions

Please note that these are our suggested solutions. Other solutions could be as good or better.

Solution to 2a.

BWIF: $\mathrm{Rb} /($ spectral eff $)=100 \mathrm{e} 6 / \log 2(64)=16 \mathrm{MHz}->$ Choose $\underline{\text { BWIF }=\mathbf{2 0} \mathbf{~ M H z}}$
BWRF: Practical RF filters have bandwidths $>\sim 5 \%$. Choose $\underline{\text { BWRF }}=5 \% *$ fRF $=$
175 MHz
fIF: The RF filter should block the image frequency, which is located at $2 *$ fIF from fRF. If the RF filter is centered at 3.5 GHz , this means that 2 *fIF $>\mathrm{BWRF} / 2->$ fIF $>$ BWRF $/ 4=175 \mathrm{MHz} / 4=$ ca 45 MHz . To keep some margin, we choose $\underline{\mathbf{f I F}=\mathbf{9 0}}$
MHz. This margin will also make sure that reverse leakage of the LO frequency through the mixer and LNA is blocked and not radiated back from the antenna.
fLO: The local oscillator frequency is selected as the difference between fIF and fRF $=3.5 \mathrm{GHz}+/-90 \mathrm{MHz}$. We choose $\mathbf{f L O}=\mathbf{3 . 4 1} \mathbf{~ G H z}$.

Solution to 2b

```
% Solution presented as MatLab code
clear;
clc
%DRf = (P3/(No*SNR))^(2/3) is the equation we will use to calculate
DRf. We
%start out by findind No, SNR, and P3.
% RF filter
T1=0; %K Filter temp outside band
% LNA
G2 = 100; % 20 dB
F2 = 10^.2; % 2 dB
P3 2 = 1e-2; % 10 dBm
T2 = (F2-1)*290; %
% Mixer
G3 = 10^-.4; % -4 dB
F3 = 10^.5; % 5 dB
P3 3 = 0.1*G3; % 20 dBm - 4dB (to get OIP3)
T3 = (F3-2)*290;% 337 K SSD noise temp
% VGA
GIF = 10; %(DRf will actually not depend on GIF)
P3 IF = 10^-2*GIF; % 10 dBm + GIF (to get OIP3)
%The IF amp. is considered noiseless.
% Filters have very high IP3 and do not need to be included in the
IP3
% calculations
P3 = (1/(P3_2*G3*GIF) + 1/(P3_3*GIF) + 1/(P3_IF) )^(-1); %=0.0027*GIF
P3 dbm = 10*log10(P3/1e-3)
% We need to have an SNR of 17.8 dB + 10*log10(6) dB (17.8 dB from
% eb/n0 and the factor 6 from spectral efficiency of QAM-64), se
Table 9.5 in Pozar
SNR db = 17.8 + 10*log10(6)
SNR=10^(SNR db/10);
Ta = 100;
```

```
B = 100e6/6; % B = Rb/spectral eff = 100 Mbit/s * 1/6 =16.7 MHz.
% Total noise power at receiver output:
No = 1.38e-23*17e6*((Ta + T2)*(G2*G3*GIF) + T3*(G3*GIF) + (T1 +
T2)*(G2*G3*GIF))
%(Which part is from the image frequency?)
%=6.84e-12*GIF
% Finally, the dynamic range calculation 3.108 in Pozar. Here GIF
will
% cancel out.
DRf = (P3/(No*SNR))^(2/3);
DRf db = 10*log10(DRf)
=42 dB
```

```
% This yields the following VGA gain range:
% Min power at input of VGA = No/GIF
% Power at VGA output = -10 dBm
Gain_max_db = -10 - 10*log10(No/GIF*1000) - SNR_db
```

$\%=48 \mathrm{~dB}$
Gain_min_db = Gain_max_db - DRf_db
$\% \mathbf{6 ~ d B}$
\% Assume propagation constant $=3$
rmax rmin $=10^{\wedge}($ DRf $\mathrm{db} / 10 / 3)$
≈ 25
return

Solution to 3

```
% Solution presented as MatLab code
% Use the Hata-Okumura propagation model with the following
parameters
d = 1; % Cell radius
f = 1000; % Frequency
hb = 20; % Base station antenna height
hm = 2; % Mobile phone height
ch=0.8+(1.1* log10(f) -0.7)*hm-1.56* log10 (f);
Lu_db = 69.55+26.16* log10(f) -13.82* log10(hb) -ch+(44.9-
6.55*log10(hb)) * log10(d)
Ptx_dbm = 50; % Transmit power = 100W
Gtx_db = 15; % Transmit antenna gain
N0 dbm = 10*log10(1.38e-23*290*5e6*10^.5/1e-3) % Noise power at
receiver input (assume unity receive antenna gain for mobile)
snr_db = 9.6 + 3; % SNR = eb/no*Rb/B for QPSK modulation
out_marg_db = -10*log10(-log(1-.05)) % Outage probability margin
assuming Rayleigh fading environment (reasonable from the text, where
"dense" urban is stated.). prob outage = 1-exp(-Pthr/PO), where P0 is
the nominal received power.
margin_per_user = Ptx_dbm + Gtx_db - Lu_db - NO_dbm - snr_db -
out_marg_db; % dB of margin per user
```

```
N = 10^(margin_per_user/10) % Use the margin to support N users
N=18 users
```


Solution to 4

a)

This will be a thermal-noise-limited link, and the receiver sensitivity $\mathrm{P}_{\text {rec }}$ is obtained from $\mathrm{Q}=6$, where $\mathrm{Q}=\mathrm{I}_{1} /(2 \sigma \mathrm{~T})=2 \mathrm{R}_{\mathrm{rec}} /(2 \sigma \mathrm{~T})=6$. In this case, $\sigma \mathrm{T}^{2}=4 \mathrm{kB}^{\mathrm{T}} \Delta \mathrm{f} / \mathrm{R}_{\mathrm{L}}=$ $1.32 \mathrm{e}-11 \mathrm{~A}^{2}$, from which we get $\mathrm{P}_{\text {rec }}=6 \sigma \mathrm{~T} / \mathrm{R}=6\left(4 \mathrm{kB} T \Delta \mathrm{f} / \mathrm{R}_{\mathrm{L}}\right)^{1 / 2} / \mathrm{R}=-18.7 \mathrm{dBm}$. The allowed losses are thus 18.7 dB which corresponds to a link length of $18.7 / 0.2=93.5$ km.
b)

Here signal-spontaneous noise will likely limit the link, and using $\mathrm{P}_{\text {rec }}$ to denote the average power in to the amplifier, the Q becomes $\mathrm{Q}=\mathrm{I}_{1} / \sigma_{s} \cdot \mathrm{sp}=2 R \mathrm{RP}_{\text {rec }} /\left(4 \mathrm{R}^{2} \mathrm{GP}_{\text {rec }} \mathrm{S}_{\text {sp }}\right.$ $\Delta \mathrm{f})^{1 / 2}=\left(\mathrm{P}_{\mathrm{rec}} /\left(\mathrm{F}_{\mathrm{n}} \mathrm{hv} \Delta \mathrm{f} / 2\right)\right)^{1 / 2}=6$, from which we find the sensitivity to be $\mathrm{P}_{\mathrm{rec}}=18 \mathrm{~F}_{\mathrm{n}} \mathrm{hv} \Delta \mathrm{f}$.
By using $\mathrm{F}_{\mathrm{n}}=4, \mathrm{~h} v \Delta \mathrm{f}=5.12 \mathrm{e}-9 \mathrm{~W}$, we get $\mathrm{P}_{\mathrm{rec}}=-34.3 \mathrm{dBm}$, and the corresponding fiber length 34.3/0.2=171 km.
Check of noise powers: The s-sp noise power is $\sigma_{s-s p}{ }^{2}=4 \mathrm{R}^{2} \mathrm{~F}_{\mathrm{n}} h v \Delta \mathrm{f} \mathrm{P}_{\mathrm{rec}} \mathrm{G}^{2} / 2=$ $\left(6 \mathrm{RF}_{\mathrm{n}} \mathrm{hv} \Delta \mathrm{fG}\right)^{2}=9.66 \mathrm{e}-11$, which is almost 6 times the thermal noise, i.e. thermal noise is not completely negligible...
A more exact treatment accounts for the thermal noise as well in the expression for the Q , and can be shown to give
$\mathrm{P}_{\mathrm{rec}}=18 \mathrm{~F}_{\mathrm{n}} \mathrm{hv} \Delta \mathrm{f}+6$ oт $/(\mathrm{RG})=-33.0 \mathrm{dBm}$, and the distance is then 165 km .

1. The access points are spread across the arena periphery. I assume that each wireless access point is connected to the central unit with an own fiber, down-limh and Ip up-linh are transmitted over the same fiber using different frequencies for data from / to central unit. The frequencies/modulation scheme are decided when designing the RF-transmitter. The fiber part is just mating a link budget with ROF instead of free-space propagation model from the central unit to the access point- λ_{1} used for uplith, λ_{2} for dow nim I design with one RoFlink for each wireless access point decidrded lasers. that is the system below is used 10 times, one for each access point at the arena. Ale.

Longest fiber distance $L=1 \mathrm{~km}$ Design for this greatest Abe loss!

The frequency used for the design is $f=900 \mathrm{MHHz}$ (downlinh) (for mobile phone users) $\quad f=850$ MHz \quad (up link) Each accesspointuses 5 mHz bandwidth for uplinhldownivit.

Downing

$$
554085-9
$$

first I need an estimate of how much power needs to be transmitted at the access point antenna.
A mobile user is say at maximum $R=100 \mathrm{~m}$ from the access point and the receiver needs a minimum amount of power.
Assume QPSK is used with $B E R=10^{-5} \quad \frac{E_{0}}{n_{0}}=9,12$
\Rightarrow SUR $\begin{aligned} & =18,24 \text { needed Data rate to mobile phone call } \\ & =12,6 \mathrm{~dB}\end{aligned}$

$$
=12,6 \mathrm{~dB} \quad R_{b}=50 \mathrm{hbitls} \Rightarrow B=100 \mathrm{kHz}
$$

If mobile phone antenna $T_{A}=T_{0}=290 \mathrm{~K}$ and noise figure of mobile phone receives $F=3 d B=2$

$$
\Rightarrow \text { Noise power }=10 \log \left(k T_{0} \text { BF. } 1000\right)=-121 \mathrm{dbm}
$$

Minimum received signal lewd $-108 \mathrm{~d} \mathrm{Bm}=1,58 \cdot 10^{-14} \mathrm{~W}$ (antenna in mobile ptanchas gain $G_{r} \simeq 1$) Using modified Fris equation with $N=2,5 \quad f_{0}=1 \mathrm{~m}$
gives path loss $10 \log \left(\frac{\lambda^{2}}{\left(4 \pi R_{0}\right)^{2}} \frac{1}{\left(R\left(R_{0}\right)^{N}\right.}\right)=-81 \mathrm{~dB}$

$$
f=900 \mathrm{mHz} \Rightarrow \lambda=0,33 \mathrm{~m}
$$

Add to this a fade margin of 20 dB (very many reflections inside arena) yields total losses $-101 d B$
EIRP for autemaat access point -20 dbm
with omiditrectional antenna $P_{t}=-25 \mathrm{dBm}$ This weneed

$$
G_{E}=5 \mathrm{~dB} \quad \text { after the fiber! }
$$

Since RF-amp. in accesspoint say $G=20 \mathrm{~dB} \Rightarrow P_{\text {out }}=-45 \mathrm{dBm}=3,16 \cdot 10_{\mathrm{W}}^{-8}$ from fiber link
$55 Y 065-9$
Row link
$P_{\text {out }}=\operatorname{Pin} s_{e}^{2} \alpha^{2} R^{2} \quad 2 p$
assume $R=50 \Omega$ no R is responsivity.
Fiber used is MMF with $\alpha=1 \mathrm{~dB} / \mathrm{hm}$ Ip lime $\mathrm{m}^{\mathrm{ar}} \mathrm{sos}^{\mathrm{a} / \mathrm{cc}}$
Optical losses in 1 km is $1 \mathrm{~dB} \Rightarrow \alpha=0,8$ above 1 p
Photo detector used is In Ga As with quantum efficiency $n=0,8 \quad 2_{p}$ The laser usedis of wavelength 1550 nm (for downing) Ip
\Rightarrow Slope efficiency $S_{l}=n \frac{h v}{q}=0,64 \mathrm{~W} / \mathrm{A}$ Ir
With Pout calculated $P_{\text {in }}=\frac{P_{\text {out }}}{S_{1}^{2} \alpha^{2} R^{2}}=\frac{3,16 \cdot 10^{-8}}{0,6 y^{2} \cdot 0,8^{2} \cdot 50^{2}} 1 \mathrm{\rho}$
$P_{\text {in }}=4,82 \cdot 10^{-11} \mathrm{~W}=-73 \mathrm{dBm}$ so we have 28 dB link gain (which is maybe unrealistic)
This power needs to be delivered to fiber by Yes! RF-bransmitter. Since down-linh RF-fergnoney is 900 MHz a transmitter with up-conversion is required.

IF-filter $\left\{\begin{array}{rl}f_{c} & =100 \mathrm{MHz} \\ \Delta f & =5 \mathrm{MHz}\end{array} \Rightarrow \frac{\Delta f}{A}=5 \%\right.$
${ }^{\top}$ required BW

BYE $\left\{\begin{array}{l}f_{c}=900 \mathrm{MHz} \\ \Delta f=100 \mathrm{MHz}\end{array}\right.$
Upper sideband used $f_{F F}=f_{20}+f_{I F}$ Lower sideband at 700 MHz rejected!

With the assumed values and calculations the amplifier need nothe there, since enough power is most likely delivered directly from modulator.

Unlink
The mobile phone transmits $0,7 \mathrm{~W}=28,5 \mathrm{dBm}$ with modified Fries eq. $R_{0}=1 \mathrm{~m}$ and $N=2.5$ this yields with $R=100 \mathrm{~m}$

$$
\begin{aligned}
P_{r} & =P_{t} \frac{G_{t} G_{r} \lambda^{2}}{\left(4 \pi R_{0}\right)^{2}} \frac{1}{\left(R_{\left.1 / R_{0}\right)^{N}}\right.}=0,7 \cdot \frac{2^{2} \cdot 0,35^{2}}{(4 \pi \cdot 1)^{2}} \cdot \frac{1}{100^{215}}=2,17 \cdot 10^{-8} \mathrm{~W} \\
t & =850 \mathrm{mHz} \Rightarrow \lambda=0,35 \mathrm{~m} G_{r} G_{t}=2 \quad \text { (omnidirectional antennas) }
\end{aligned}
$$

$P_{r}=-46,6 \mathrm{dbm}$ at access point, the system should also have 20 dB fade margin. Design for $P_{r}=-66 \mathrm{dBm}$
With 20 dB amplification before fiber link $P_{\text {in }}=-46,6 \mathrm{dBm}$ at fiber.
Output power at central unit station after fiber

$$
\begin{aligned}
& P_{\text {out }}=P_{\text {in }} S_{l}^{2} \alpha^{2} R^{2}=2,18 \cdot 10^{-8} \cdot 0,64^{2} \cdot 0,8^{2} \cdot 50^{2}=-18,6 \mathrm{dBm} \\
&+2 p \text { use }
\end{aligned}
$$

This power must be detected by the RF-receiver! $\lambda=1500 \mathrm{~nm}$
Since a different laser wavelength is used for the uptinh (to avoid coosstalk, sp is slightly different and also α so this is an approximate result)

Use a receiver with a single down conversion step since not very much gain is needed.

Difference frequency is $f_{I F}=f_{R F}-h_{0}$
Image frequency is at $f_{I N}=650 \mathrm{MHz}$

$$
\stackrel{B P F}{=}\left\{\begin{array}{l}
f_{c}=850 \mathrm{mHz} \\
\Delta f=100 \mathrm{mtz}
\end{array} \quad \Rightarrow I_{\text {mage }}\right. \text { rejected! }
$$

IF-filter $\left\{\begin{array}{l}f_{c}=100 \mathrm{mHz} \\ \Delta f=5 \mathrm{MHz}\end{array} \quad \frac{\Delta f}{f}=5 \%\right.$ required bandwidth
With fitter losses $2+2 d B=4 d B$ mixer conversion loss $5 d B$

$$
\Rightarrow P_{\bmod }=-18,6-4-5+G_{\text {rot }}
$$

Assume $P_{\bmod }=0 \mathrm{dBm} \Rightarrow G_{\text {th }}=27,6 \mathrm{~dB}$
Can be placed entirely on IF or spread as

$$
G_{1}=10 d B \quad G_{2}=17,6 d B
$$

The design given is for a worst case link from central -unit \rightarrow access Should work if used 10 times for 10 access points!

