
Exam in the course Plasma physics with applications, RRY085

2012-10-23

Total number of points: 31
Grading: 50% correct answers and solutions for mark 3, 65 % for mark 4, and 80 % for mark 5.

Problem 1: Plasma descriptions (total points: 5)

Give short answers and explanations to the following questions and statements.

1. A plasma consists of a huge number of particles. Tracking the trajectory of each particle
and keeping track of the interactions between all particles becomes impossible for systems
with more than a couple of thousand particles. Therefore it is necessary to use a model
of the plasma which takes account of average properties of the plasma. There are three
main degrees of sophistication for these approximative descripitions. What are the three
descriptions, or models, called? (1p)

2. Describe the main differences between these descriptions! (1p)

3. For investigating the properties of a wave in a cold unmagnetized plasma, which description
should you use? (1p)

4. For investigating the stability properties of a Tokamak plasma, which description is most
convenient? (1p)

5. When taking velocity moments of the Boltzmann equation, a set of equations is produced.
Describe one serious problem with these equations, and suggest a way of overcoming this
problem! (1p)

Problem 2: Fully ionized vs. partially ionized gases, collision and diffusion (total points:
9)

Give short answers and explanations to the following questions and statements.

1. Fusion plasmas and space plasmas are completely ionized, whereas most industrial appli-
cations of plasma uses partially, or weakly, ionized gases; where only a small fraction of
the molecules and atoms are ionized. However, this minute degree of ionization has drastic
implications for the electrical and chemical properties of the gas, which can be of great use
in industrial applications. Name two applications of partially ionized gases! (1p)

2. Name two natural occurances of partially ionized gases, or plasma, on the earth, or at least
inside the earth’s atmosphere! (1p)

3. The collision dynamics of fully ionized and partially ionized gases are quite different. What
are the different types of collisions, and what is the main difference? (1p)
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4. Describe the ionization mechanism in a fully ionized plasma in thermal equilibrium! (1p)

5. Why is this ionization mechanism unusable for gases at atmospheric pressure and density,
and what is the standard way of ionizing such gases? (1p)

6. Collisions lead to diffusion of particles. What is diffusion, and what does it lead to? (1p)

7. In the case of gases of very low ionization degree, the electrons diffuse freely, but for higher
degrees of ionization, the interaction between ions and electrons becomes important. What
is this type of diffusion called, and what is the main consequence for the diffusion rate? (1p)

8. In an unmagnetized plasma, the electron-ion collision frequency is determined by the electron
mean free path. In a strongly magnetized plasma on the other hand, it is not the mean free
path which is important, but rather a different length. Which length is this? (1p)

9. Give approximate formulas for the diffusion coefficient, D, in unmagnetized and strongly
magnetized plasmas! (1p)

Problem 3: Current and heating (total points: 3)

1. In the presence of collisions, with ions or neutrals, the average motion of an electron in an
unmagnetized plasma subject to a DC electric field is described by

m ˙̄v = −eĒ −mνcv̄

where m is the electron mass, v̄ the electron velocity, dot denotes differentiation with respect
to time, e is the electron charge, Ē the electric field, νc the electron collision frequency.

After a short time, the electron velocity reaches a stationary value. This leads to a current.
Given the definition of conductivity, j̄ = σĒ, where j̄ is the current, and σ is the conductivity.
What is the current and conductivity if the electron density is n (m−3)? (1p)

2. The current leads to absorption of energy from the electric field which is released in the
plasma. Give an expression for the energy release per second per cubic meter in the plasma
due to the current! (1p)

3. The inverse of conductivity is resistivity, η. In a fully ionized plasma, the resistivity decreases
with temperature. Using the formula you found in the previous problem, explain why this a
big problem for fusion applications! (1p)
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Problem 4: MHD Equilibrium (total points: 6)

1. Describe briefly the two different cylindrical configurations (θ- and Z-pinch) that produce
a pinching effect, i.e. a plasma density that peaks at the cylindrical axis. Discuss how the
fields are generated and pinpoint the directions of the resulting fields and currents inside the
plasma. Remember that a picture says more than a thousand words. (2p)

2. Derive the pressure balance expression for the θ-pinch: Use your conclusions from the pre-
vious problem to analyze the equilibrium MHD equations

µ0J0 = ∇×B0 (1)

and

J0 ×B0 = ∇P0 (2)

by assuming cylindrical symmetry, ∂/∂θ = 0, and infinite cylinders, ∂/∂z = 0! The curl in
cylindrical coordinates reads (2p)
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3. Assume that the magnetic field in the z-pinch increases monotonically in radius from the
the cylindrical axis and outwards to the plasma edge. Sketch the corresonding radial profiles
for P0 and J0. It is necessary to impose physical boundary conditions on B0. (2p)

Problem 5: Basic plasma properties (total points: 2)

The average particle separation in a fully ionized plasma is roughly n−1/3, where n is the number
density of electrons and ions. What is the potential energy between two electrons? Find a formula
for the kinetic energy divided by the potential energy! A criterion for the ionized gas to truly be
a plasma is that the number of particles in the Debye sphere should be very large, i.e. λ3

Dn ≫ 1.
Using

λD =

√
ǫ0kBT

ne2

show that the kinetic energy is much larger than the potential energy! What are the implications
of this for the plasma? (2p)
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Problem 6: Single-Particle Motion (total points: 2)

The magnetic field due to an infinitely long wire carrying a current I is given by

B =
µ0I

2πR
eθ , (4)

where θ is the angle around the wire. Using single-particle theory, explain why this configuration
is not able to confine individual charged particles (ions or electrons) in the (R, z)-plane! (2p)

Problem 7: MHD Normal Modes (Alfvén Waves) (total points: 4)

During the lectures, we found Alfvén waves in the low-frequency limit of waves that propagate
parallel to the background magnetic field in a magnetized, cold plasma. Actually, we found two
different types of Alfvén waves: The compressional Alfvén wave, corresponding to the low-frequency
limit of the R-mode, and the shear Alfvén wave, corresponding to the low-frequency limit of the
L-mode. Our derivation utilized the two-fluid equations. However, due to their low frequencies,
Alfvén waves can be described much more easily using MHD theory (which indeed is suitable for
low-frequency, large-scale instabilities). In this problem, we will rederive the dispersion relation
for the shear Alfvén wave by means of linearized MHD.

The linearized MHD equation for a generic fluid velocity perturbation V1 = R (r) e−iωt in a
plasma with equilibrum pressure P0, equilibrium mass density ρm0 and equilibrium magnetic field
B0, is given by

−ω2ρm0 (r)R (r) = F (R (r)) (5)

where the force operator is

F (R) =
1

µ0

(∇×B0)× [∇× (R×B0)] +
1

µ0

{∇ × [∇× (R×B0)]} ×B0 (6)

+∇ (R · ∇P0 + γP0∇ ·R)

and ω is the frequency of the perturbation. For ω2 < 0, the perturbation grows exponentially in
time, which corresponds to an instability, and for ω2 > 0, the pertubation oscillates, i.e. it is a
wave. We are interested in the latter case.

1. Assume that the plasma equilibrium is infinite, homogeneous and incompressible (i.e. that
the perturbed velocity satisfies ∇ ·V = 0). Simplify the operator F accordingly! The RHS
should now contain only one term. (1p)

2. Rotate the coordinate system so that B0 points in the z-direction and the wave vector is
aligned according to k = k⊥ey + k‖ez! Fourier analyze in space by setting

R (r) = R̃ ei(k⊥y+k‖z) (7)

For shear waves, only the component perpendicular to the propagation direction, i.e. the
wave vector k, is nonvanishing. Hence, R̃y = R̃z = 0. Under these assumptions, derive the
dispersion relation for the shear Alfvén wave by solving (5)! (3p)
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