
Exam in Course Radar Systems and Applications (RRY080) 
16th January 2010, 14:00-18:00. 
 
Additional materials: Beta, Physics Handbook (or equivalent), Dictionary and Electronic calculator 
(it is free-of-choice but no computers are allowed). 
 
Leif Eriksson (tel: 4856) and Anatoliy Kononov (tel 1844) will visit around 15:00 and 17:00. 
 
Read through all questions before this time to check that you have understood the questions. 
 
Answers may only be given in English. 
 
Clearly show answers (numbers and units!) to each part of question just after the 
corresponding solution. 
 
Begin each question on a new sheet of paper! 
 
Each question carries a total of ten points. Where a question consists of different parts, the number 
of points for each part of the question is indicated in parentheses. In most cases it should be 
possible to answer later parts of the question even if you cannot answer one part. 
 
Grades will be awarded approximately as <20 = Fail, 20-29 = 3, 30-39 = 4, ≥40 = 5  
(exact boundaries may be adjusted later). 
 
Review of corrected exam papers will take place on the two following occasions:  

Monday the 1st of February, 10:00-11:45 
Friday the 5th of February, 14:00-15:00 

 



 
1. Basic terms & principles  

 
a) The elevation gain pattern of a radar antenna is approximated by ( )2900exp θ−= oGG , 

where θ is the elevation angle in radians. Compute the 3 dB beamwidth expressed in 
degrees.           (2p)  

 
b) What is the bistatic RCS of a metallic sphere with radius r >> wavelength?  (2p) 

 
c) Compute the Doppler frequency shift from a satellite moving with relative velocity of 5 

km/s observed by a radar operating with frequency at f = 15 GHz.    (2p) 

 
d) Compute the distance to the radar horizon for a marine radar located 30 m above sea level. 

Assume the Earth radius is RE = 6378 km and take into account refraction by air in normal 
atmospheric conditions.         (2p) 

 
e) A radar system operates with a pulse repetition frequency of 10 kHz. Compute the 

maximum unambiguous range.        (2 p) 

 



2. Repeat pass InSAR for moving objects. 
 

A satellite SAR interferometer operates at altitude h0=800 km, incidence angle θ = 23° and 
with a horizontal antenna baseline B (between the two passes over the area) of 200 m. The 
frequency of the SAR is 10 GHz. Assume a flat earth geometry. 
 

a) Draw one or two figures that explain the geometry of the interferometer. The altitude, 
incidence angle and antenna baseline must be indicated in the figure/s. The parallel and 
perpendicular components of the baseline should also be clearly marked.  (2 p) 
 

b) Determine the fringe spacing (distance for one full fringe) on a horizontal flat surface in the 
original slant range image. Hint: One full fringe corresponds to Δφ = 2π  (3 p) 

 
c) Two radar reflectors have been deployed in the neighborhood of each other in order to 

investigate the sensitivity to small motion detection. The SAR interferometer images the 
two reflectors on two occasions and one of the reflectors is moved by 1cm vertically 
between the two over passes. Determine the relative change of the phase difference between 
the reflectors.          (3 p) 

 
d) Determine the maximum vertical displacement of a reflector that can be measured without 

phase ambiguities         (2 p) 
 
 



 
3. Radar scattering 
 
A monostatic radar system with a network analyzer and an antenna is used in the laboratory 
exercise to measure the backscatter and dielectric properties of different objects and materials. 
The aperture of the antenna is 20 cm and the distance between the antenna and the object is 
kept at 2 m. For the following questions, assume that the frequency is 10 GHz. 

 
a) Explain the difference between near field and far field and calculate the minimum distance 

for the far field (according to the Fraunhofer criterion) if the target has a characteristic 
horizontal size of 30 cm.        (3 p) 

 
b) Determine the width of the illuminated zone (the foot print) limited by the antenna gain. 

           (1 p) 
 
c) Determine the width of the first Fresnel zone.     (1 p) 
 
d) At high frequency, the radar cross section of a trihedral reflector is given by, 
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where a is the trihedral base length. 

 
How large must a metallic sphere be to have the same radar cross section as a trihedral.  
            (2 p) 

 
e) At this frequency, what should be the characteristic roughness height of a surface to fulfill 

the Rayleigh criterion for a smooth surface?      (2 p) 
 
f) In addition to the roughness, what else affect the scattering from a surface of sand? 

            (1 p) 
 
 



4. Processing of radar signals 

A search radar is to detect a target with the probability of detection 0.9DP =  by using one received 
pulse to take a decision on the presence of the target. The radar is designed to provide the range 
resolution 75mδR = . The radar wavelength is 0.03mλ =  and the transmitted pulse width 
is 6 s50 10T −= ⋅ . 
 
a) Compute the minimum signal-to-noise ratio (SNR, dB) required to ensure the specified 

probability of detection for a Swerling I target if the probability of false alarm 610FAP −= .   (1 p) 
 
b) Assume the transmitted pulse is an LFM (linear-frequency modulated) signal. Write an 
analytical expression for the complex envelope of this signal and compute its bandwidth B  and 
compression ratio CR . Explain the physical meaning of the compression ratio.  (2 p) 
 
c) The radar observes two zero-Doppler point targets having the same angular coordinates but 
separated in range by a distance of D  m. Draw the envelopes of corresponding echo signals at the 

output of the LFM matched filter for the two cases: (i) D  = 150 m and (ii) D  = 50 m. Ignore the 
receiver noise. How could you characterize the possibility to distinguish the targets in case (i) and 
(ii) taking into account the radar resolution ability?      (3 p) 
 
d) Estimate the maximum range measurement error RΔ  due to the range-Doppler coupling effect 

for LFM signals if the target radial velocity max| |r rV V≤ , where maxrV = 150 m/s. Illustrate this 
effect by using a contour plot of the LFM ambiguity function.    (4 p) 
 
 



 

5. Radar measurements of Venus 
 

In 1959 and 1961, the MIT Lincoln Laboratory Millstone radar made comprehensive 
measurements of the Earth-Venus distance. The data and subsequent analysis led to the 
determination of the astronomical unit (mean distance between the Sun and the Earth) with 
unprecedented accuracy (+/- 300 km). Similar and consistent results were obtained during the 
same time period by the NASA JPL Goldstone radar.  
 
Millstone radar parameters used in 1961 
 

Peak transmit power, Ppeak 2.5 MW 
Average transmit power, Pavg 0.15 MW 
Operating frequency, f  440 MHz 
Effective aperture of the antenna, Ae 207 m2 
System noise temperature, Ts 240 K 
Total system losses, L  1 dB 
Pulse lengths 0.5 ms; 2 ms; 4 ms 

 
Assume the propagation speed is the speed of light in vacuum, i.e. 299792458 m/s, and that 
Venus has a mean radar cross section of 1.7 x 1013 m2 (15% of its projected area). Assume 
the time delay is 283 s which was obtained on 10 April 1961 when the distance between 
Earth and Venus was at its minimum. Require 95% probability of detection at 0.0001 false-
alarm probability in the analysis. 
 
a) Determine the required coherent integration time assuming that Venus is a steady target. 
            (4p) 
 
b) Real measurements show that Venus radar echoes are time-varying and have a Doppler 
bandwidth of about 0.5 Hz. Assume a Swerling case 1, i.e. coherent integration of a steady 
target during a dwell time of 2 s (reciprocal of the Doppler bandwidth) followed by 
incoherent integration of a target with randomly varying radar cross section σ according to 
the probability density function ( ) ( ) ( )σσσσ −= exp1p . Determine the required total 
integration time for detection.        (4p)  
 
c) The NASA JPL Goldstone radar also made measurements during the same time period. It 
operated using a higher frequency of 2388 MHz, system noise temperature of 64 K, average 
transmit power of 13 kW and total system losses of 1 dB. Did the Goldstone radar need more 
or less integration time to detect Venus compared to the Millstone radar? Motivate your 
answer. Assume the same effective aperture area as the Millstone radar antenna. The 
expected attenuation through the entire atmosphere as a function of frequency for different 
elevation angles is given in the graph below.      (2p)  
 



 
 



 



 



 



 
 

Attenuation by entire atmosphere (dB) 



Formulas which may be used at examination of the course Radar Systems and 
Applications (equation and page numbers refer to the course book by Sullivan) 
 
 
Radar equation 
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System noise 
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Radar clutter 
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Envelope detection of targets embedded in noise (single-pulse decision) 

a) Nonfluctuating (steady) target 
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b) Fluctuating target 
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Matched filter 
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Ambiguity function 
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Doppler frequency (this formula takes into account the sign of Doppler frequency) 
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Maximum unambiguous velocity interval 
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Solutions to 

Exam in Course Radar Systems and Applications (RRY080) 
16th January 2010, 14:00-18:00. 

 
1. Basic terms & principles  
 

a) The elevation gain pattern of a radar antenna is approximated by  ( )2900exp θ−= oGG , where θ 

is the elevation angle in radians. Compute the 3 dB beamwidth expressed in degrees.    
                (2p)  

 
b) What is the bistatic RCS of a metallic sphere with radius r >> wavelength?   (2p) 

 
c) Compute the Doppler frequency shift from a satellite moving with relative velocity of 5 km/s 

observed by a radar operating with frequency at f = 15 GHz.       (2p) 

 
d) Compute the distance to the radar horizon for a marine radar located 30 m above sea level. Assume 

the Earth radius is RE = 6378 km and take into account refraction by air in normal atmospheric 
conditions.                 (2p) 
 

e) A radar system operates with a pulse repetition frequency of 10 kHz. Compute the maximum 
unambiguous range.               (2 p) 

 
Solution 1 
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2. Repeat pass InSAR for moving objects. 
 
A satellite SAR interferometer operates at altitude h0=800 km, incidence angle θ = 23° and with a 
horizontal antenna baseline B (between the two passes over the area) of 200 m. The frequency of the 
SAR is 10 GHz. Assume a flat earth geometry. 
 

a) Draw one or two figures that explain the geometry of the interferometer. The altitude, 
incidence angle and antenna baseline must be indicated in the figure/s. The parallel and 
perpendicular components of the baseline should also be clearly marked.  (2 p) 

 
b) Determine the fringe spacing (distance for one full fringe) on a horizontal flat surface in the 

original slant range image. Hint: One full fringe corresponds to Δφ = 2π  (3 p) 
 

c) Two radar reflectors have been deployed in the neighborhood of each other in order to 
investigate the sensitivity to small motion detection. The SAR interferometer images the two 
reflectors on two occasions and one of the reflectors is moved by 1cm vertically between the 
two over passes. Determine the relative change of the phase difference between the 
reflectors.          (3 p) 

 
d) Determine the maximum vertical displacement of a reflector that can be measured without 

phase ambiguities         (2 p) 
 
 
 
 
Solution 2 
 
a) 

 
Figure: The geometry of the interferometer. 
 



b) The baseline B is small compared to the altitude of the satellite orbits h0, so we can assume that 
the rays from the two passes are parallel. From the figure it can be seen that a change in incidence 
angle θ will cause a change in Bp, where the phase difference, φ , between the satellite passes is 
related to Bp by 
 
φ = 2kBp        (1) 
and 
Bp = Bsinθ        (2) 
 
For a small angle dθ: 
dBp = Bcosθdθ = Bndθ      (3) 
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We want to relate this to a distance in the slant range image, dr 
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For one full fringe, dφ = 2π, we have the distance in the slant range image 
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The distance in the ground range image for one full fringe is 

m
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c) In the first image the phase difference between the radar reflectors is zero. 
In the second image the phase difference = 2kΔR, where ΔR is the change in range 
between the reflectors. 
 
ΔR = Δz cosθ       (9) 
 
=> Interferometric phase difference between the reflectors = 2kΔz cosθ = 3.86 radians = 220° 
(=0.61 of a full fringe). 
When the reflectors are separated horizontally, a phase as calculated in part a (i.e. related to 
horizontal separation Δx) is also present. 
 
d) Phase ambiguity occurs when Δφ ≥ 2π 
 
2kΔz cosθ =2π → ∆z=0.0163 m 
 



 
3. Radar scattering 
 
A monostatic radar system with a network analyzer and an antenna is used in the laboratory exercise 
to measure the backscatter and dielectric properties of different objects and materials. The aperture 
of the antenna is 20 cm and the distance between the antenna and the object is kept at 2 m. For the 
following questions, assume that the frequency is 10 GHz. 
 
a) Explain the difference between near field and far field and calculate the minimum distance 

for the far field (according to the Fraunhofer criterion) if the target has a characteristic 
horizontal size of 30 cm.        (2 p) 

 
b) Determine the width of the illuminated zone (the foot print) limited by the antenna gain. 
            (1 p) 
 
c) Determine the width of the first Fresnel zone.     (1 p) 
 
d) At high frequency, the radar cross section of a trihedral reflector is given by, 
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where a is the trihedral base length. 
 

How large must a metallic sphere be to have the same radar cross section as a trihedral. 
            (2 p) 
 
e) At this frequency, what should be the characteristic roughness height of a surface to fulfill 

the Rayleigh criterion for a smooth surface?      (2 p) 
 
f) In addition to the roughness, what else affect the scattering from a surface of sand? 
            (1 p) 
 
 
Solution 3 
 
a) In the far field the distance between the antenna and the target is great enough that the antenna 

may be regarded as a point source. The wave fronts striking the target are essentially planar. In 
the near-field the wave front is no longer planar (see e.g. Sullivan page 43). 

 
The Fraunhofer criterion implies that the far field exist when R>Rfar=2L2/λ, where L is the 
characteristic length of the target. In our case Rfar=6m 

 
b) θB=λ/D = 0.15 rad  
 

r/h=tan(θ/2) 
 

r = 0.1503 m, i.e. width = 0.3 m 
 
c) radius of footprint = (h2 + (h+λ/2)2)0.5 = 2.839 m, i.e width = 5.678 m 
 



d) 
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e) Rayleigh criterion for a smooth surface: 2kscosθ<π/8  

where s is the characteristic roughness height. 
 

s < 0.0009401 m 

f) The moisture of the sand. 
 



4. Processing of radar signals 
A search radar is to detect a target with the probability of detection  0.9DP =  by using one received pulse 

to take a decision on the presence of the target. The radar is designed to provide the range 

resolution 75mδR = . The radar wavelength is 0.03mλ =  and the transmitted pulse width 

is 6 s50 10T −= ⋅ . 

 
a) Compute the minimum signal‐to‐noise ratio (SNR, dB) required to ensure the specified probability 

of detection for a Swerling I target if the probability of false alarm
610FAP −= .     

                    (1 p) 
 

b) Assume the transmitted pulse is an LFM (linear‐frequency modulated) signal. Write an analytical 

expression for the complex envelope of this signal and compute its bandwidth  B  and compression 

ratio CR . Explain the physical meaning of the compression ratio.    (2 p) 

 
c) The radar observes two zero‐Doppler point targets having the same angular coordinates but 

separated in range by a distance of  D  m. Draw the envelopes of corresponding echo signals at the 

output of the LFM matched filter for the two cases: (i) D  = 150 m and (ii) D  = 50 m. Ignore the 

receiver noise. How could you characterize the possibility to distinguish the targets in case (i) and 
(ii) taking into account the radar resolution ability?          (3 p) 
 

d) Estimate the maximum range measurement error  RΔ  due to the range‐Doppler coupling effect for 

LFM signals if the target radial velocity max| |r rV V≤ , where maxrV = 150 m/s. Illustrate this effect by 

using a contour plot of the LFM ambiguity function.        (4 p) 
 



Solution 4 

a) 
6ln ln101 1 108.272; [dB] 10 lg 10 lg108.272 20.35dB

ln ln 0.9
FA

D

PSNR SNR SNR
P

−

= − = − = = = =

 

b) ( ) 21 exp , 0 , zero elsewhereu t jπkt t T
T

⎡ ⎤= ≤ ≤⎣ ⎦  

8
6 6 63 10 Uncompressed pulsewidth2 10 Hz; 2 10 50 10 100;

2 2 75 Compressed pulsewidth
cB CR B T CR
δR

−⋅
= = = ⋅ = ⋅ = ⋅ × ⋅ = =

⋅
 

 
c) 

 
 
d) 

6
max 4 4 8

6

8 8

2 | | 2 150 50 1010 Hz; 10 25 10 s
0.03 2 10

3 10 25 10 37.5m = 0.5 R
2 2

rV Tν τ ν
λ B

c τR δ

−
−

−

⋅ ⋅
Δ = = = Δ = Δ = = ⋅

⋅
Δ ⋅ ⋅ ⋅

Δ = = =
 

 

RΔ  

νΔ  



 
5. Radar measurements of Venus 
 
In 1959 and 1961, the MIT Lincoln Laboratory Millstone radar made comprehensive 
measurements of the Earth-Venus distance. The data and subsequent analysis led to the 
determination of the astronomical unit (mean distance between the Sun and the Earth) with 
unprecedented accuracy (+/- 300 km). Similar and consistent results were obtained during the 
same time period by the NASA JPL Goldstone radar.  
 
Millstone radar parameters used in 1961 
 

Peak transmit power, Ppeak 2.5 MW 
Average transmit power, Pavg 0.15 MW 
Operating frequency, f  440 MHz 
Effective aperture of the antenna, Ae 207 m2 
System noise temperature, Ts 240 K 
Total system losses, L  1 dB 
Pulse lengths 0.5 ms; 2 ms; 4 ms 

 
Assume the propagation speed is the speed of light in vacuum, i.e. 299792458 m/s, and that 
Venus has a mean radar cross section of 1.7 x 1013 m2 (15% of its projected area). Assume 
the time delay is 283 s which was obtained on 10 April 1961 when the distance between 
Earth and Venus was at its minimum. Require 95% probability of detection at 0.0001 false-
alarm probability in the analysis. 
 
a) Determine the required coherent integration time assuming that Venus is a steady target. 
            (4p) 
 
b) Real measurements show that Venus radar echoes are time-varying and have a Doppler 
bandwidth of about 0.5 Hz. Assume a Swerling case 1, i.e. coherent integration of a steady 
target during a dwell time of 2 s (reciprocal of the Doppler bandwidth) followed by 
incoherent integration of a target with randomly varying radar cross section σ according to 
the probability density function ( ) ( ) ( )σσσσ −= exp1p . Determine the required total 
integration time for detection.        (4p)  
 
c) The NASA JPL Goldstone radar also made measurements during the same time period. It 
operated using a higher frequency of 2388 MHz, system noise temperature of 64 K, average 
transmit power of 13 kW and total system losses of 1 dB. Did the Goldstone radar need more 
or less integration time to detect Venus compared to the Millstone radar? Motivate your 
answer. Assume the same effective aperture area as the Millstone radar antenna. The 
expected attenuation through the entire atmosphere as a function of frequency for different 
elevation angles is given in the graph below.      (2p)  
 



Solution 5 
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b) Since the coherent processing interval (CPI) is limited to be T 2c s= , the SNR that can be 
achieved after the coherent integration over this interval is 

12.5 /10
0

0

(1) 10 2.82 4.5
12.6 / 2c

DSNR dB
n

= = = ⇒ . Here 0 /dwell cn t T=  is the number of CPIs that can 

be placed within the dwell time computed assuming envelope detection of a steady target. 
 

 
To determine the required total integration time nTc we need to determine the number of 
pulses n taking into account the integration loss (due to noncoherent integration of n pulses) 
and the fluctuation loss (Swerling-1 target model). The number of pulses can be determined 
by using equation for the required signal-to-noise ratio per one pulse 
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This required SNR must be equal to that after coherent processing over the CPI, i.e. 
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These are samples (pulses), which are the results of 
coherent integration over the interval Tc.  

These samples are integrated noncoherently 
(i.e., after the envelope detector) 

n =? 



and the fluctuation loss 
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Equation (*) can be solved graphically 
 

From figure 588n ≈ . Thus, the total integration time is 588 2 1176cnT s= ⋅ = (19.6 min). 
 

c) The factor 
s

avg

T
GP

is equal to 3.5 x 106 W/K for the Millstone radar compared with 3.3 x 

107 W/K for the Goldstone radar. Atmospheric losses are greater for the Goldstone radar but 
the difference compared with the Millstone radar is less than 2 dB according to the graph. We 
therefore expect less integration time for the Goldstone radar. 
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