Exam
 Electromagnetic Waves and Components (RRY 036), 22/10 2012 Department of Earth and Space Sciences

Teachers:

Hans Nordman (tel. 1564, mobil 070-8850899)
Arto Heikkilä (tel. 8587, mobil 073-0284378)

On the exam you may use:

- Chalmers-approved calculator,
- Formulas in Electromagnetic waves (E. Palmberg 2012),
- Formulae and constants for blackbody radiation, excitation of two-level systems and radiative transfer (A.Heikkilä 2012),
- Physics Handbook, Beta, etc,
- Dictionary (not electronic).

Grade limits:
Grade 3(=pass): 20 points
Grade 4: 30 points
Grade 5: 40 points
A maximum of 50 points can be achieved on the exam.

Remember: Give full solutions to the problems you hand in, i.e. explain and motivate your answers carefully! Be careful with units! When drawing graphs, indicate clearly the quantity on each axis, and give the scale.

1. A black-body radiator is formed as a sphere with a radius of 5 cm . Its spectrum is shown in the Figure below. The scale of the frequency axis is THz , and the scale of the specific intensity axis is $10^{-12} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$. Estimate the total power emitted by this radiator.

2. Molecular clouds in the Milky Way are the sites of star formation. In these clouds the gas is mainly composed of molecular hydrogen and atomic helium, mixed with very small amounts of other molecular (or atomic) species. However, these "rare species" are important since they cool the gas through their radiation (and hence assist the star formation process) and serve as measurement probes of the cloud's physical conditions.

Observations of radiation from the molecule ${ }^{13} \mathrm{CO}$ (a rarer isotopomer of carbon monoxide with carbon-13 instead of carbon-12) from one such cloud shows a maximum brightness temperature of $8,0 \mathrm{~K}$ at the frequency $110,2 \mathrm{GHz}$. At frequencies outside this peak, the brightness temperature drops to $3,0 \mathrm{~K}$. The optical depth has been estimated using other observations to 0,30 . The spontaneous emission rate for the $110,2 \mathrm{GHz}$ transition is $A_{u l} \approx 6,3 \cdot 10^{-8} \mathrm{~s}^{-1}$, statistical weights $g_{l}=1$ and $g_{u}=3$, and a collision coefficient $c_{u l} \approx 3,3 \cdot 10^{-11} \mathrm{~cm}^{3} / \mathrm{s}$. The density of collision partners (mainly H_{2}) is $3 \cdot 10^{4} \mathrm{~cm}^{-3}$.

Estimate the kinetic temperature of the gas in this cloud. Treat ${ }^{13} \mathrm{CO}$ as a two-level system. You may neglect the influence of absorption and stimulated emission.
3. Assume time harmonic fields with angular frequency ω in a source free lossy medium with $\mathbf{J}=\sigma \mathbf{E}$ and where the medium parameters $\mu=\mu_{0}$ and $\varepsilon=\varepsilon_{d}$ are real constants.
a) Derive the wave equation (Helmholtz equation) for the magnetic field phasor $\underline{\mathbf{H}}(\mathbf{r})$ starting from Maxwell's equations in phasor form. (5p)
b) In free space $\left(\varepsilon=\varepsilon_{0}, \mu=\mu_{0}\right.$, and $\left.\sigma=0\right)$ a solution to the wave equation for the magnetic field phasor is given by:

$$
\underline{\vec{H}}(\vec{r})=\left((1+j) \hat{x}+\sqrt{2} e^{j \pi / 4} \hat{z}\right) e^{-j \beta y}
$$

Determine the corresponding electric field $\mathbf{E}(\mathbf{r}, \mathrm{t})$ and the polarisation of the wave (linear, circular or elliptical). Give reasons for your answer. (5p)
4. The parameters of moist earth at a frequency of $f=1 \mathrm{MHz}$ are $\varepsilon=4 \varepsilon_{0}, \mu=\mu_{0}$, and $\sigma=0.1 \mathrm{~S} / \mathrm{m}$. Assuming that the electric field of a uniform plane wave with $f=1 \mathrm{MHz}$ propagating in the z direction is $\underline{\mathbf{E}}=\hat{y} 3 \times 10^{-2} \mathrm{~V} / \mathrm{m}$ at $\mathrm{z}=0$, find:
a) The wavelength inside the earth and in vacuum. (2p)
b) The field $\mathbf{E}(\mathrm{z}, \mathrm{t})$ and the distance through which the wave must travel before the magnitude of the electric field reduces to $1.104 \times 10^{-2} \mathrm{~V} / \mathrm{m}$. (4p)
5. Consider the propagation of a uniform monochromatic plane wave in the ionosphere, modelled as a collisionless plasma with refractive index $n^{2}=1-\omega_{p}{ }^{2} / \omega^{2}$ where $f_{p}=8 \mathrm{MHz}$.
a) What is the difference in arrival time between a flash of light ($\mathrm{f}=600 \mathrm{THz}$) and a simultaneous radio pulse ($\mathrm{f}=10 \mathrm{MHz}$) seen through the plasma along a path of 100 km ? (5 p)
b) Assume that the plasma frequency f_{p} increases with height above the earth. Make a sketch to show how a ray of light propagates through the ionosphere in that case. Explain the result! (2p)
6. A uniform plane wave travelling in air (refractive index $n=1$) is incident normally on a dielectric medium with refractive index $n_{2}=2.2$. The incident field is given by $\mathbf{E}_{\mathrm{i}}=\hat{\mathrm{y}} \mathrm{E}_{0} \cos (\omega \mathrm{t}-\mathrm{kz}) \mathrm{V} / \mathrm{m}$. The reflections can be eliminated by placing another dielectric slab with refractive index $n_{1}, \lambda_{1} / 4$ thick, between air and the original dielectric medium.
a) Determine the refractive index of the $\lambda_{1} / 4$ slab to accomplish this. (1p)
b) A dielectric with the calculated refractive index does not exist. Use the table below to choose the appropriate medium with refractive index n_{1} for the $\lambda_{1} / 4$ slab to best reduce reflections. (1p)
c) Calculate the reflected electric field $\mathbf{E}_{\mathrm{r}}(\mathrm{z}, \mathrm{t})$ in air with the chosen medium $\mathrm{n}_{1} .(5 \mathrm{p})$

Material	n_{1}
MgF_{2}	1.38
Polystyrene	1.60
PbF_{2}	1.73

7. Unpolarised light at optical frequencies $(\mathrm{f}=600 \mathrm{THz})$ is incident from vacuum, at an incident angle $\theta_{\mathrm{i}}=60^{\circ}$ on a dielectric medium with refractive index $\mathrm{n}^{\prime}=1.6$. Calculate the degree of polarisation of the reflected wave. The degree of polarisation can be defined as: $\delta=\left(\mathrm{I}_{\mathrm{TE}}{ }^{-}\right.$ $\left.\mathrm{I}_{\mathrm{TM}}\right) /\left(\mathrm{I}_{\mathrm{TE}}+\mathrm{I}_{\mathrm{TM}}\right)$, where I is the intensity (time averaged Poynting vector) of the reflected wave. Explain the result! What happens with δ in the case of normal incidence? (6 p)

8. Two Hertzian dipoles located at $\mathrm{x}=\mathrm{y}=\mathrm{z}=0$ are excited $\pi / 2$ out of phase with dipole moment phasors $\mathfrak{p}_{x}=p_{0}$ and p_{y}, respectively, with $\mathfrak{p}_{y}=\mathrm{p}_{x}$. a) Calculate the electric field $\mathbf{E}(r, t)$ and the magnetic fields $\mathbf{H}(\mathrm{r}, \mathrm{t})$ at a point P in the x - y plane for $\mathrm{z}=0$ (radiation fields). b) Determine the polarisation of the wave at point P . c) Calculate the Poynting vector \mathbf{P} in the $\mathrm{x}-\mathrm{y}$ plane for $\mathrm{z}=0$! (8p)

$R R Y O 3699 / 10-2012$
Electromagnetic waves and components
(1)

$$
P=A \cdot I \approx 4 \pi r^{2} 5,67 \cdot 0^{8}+4
$$

This estimated by reading out the freq of the peak specific intensity:

$$
\begin{aligned}
& T=\frac{\text { peak }}{5.88 .1610}=425 \mathrm{k} \\
& \text { radius } r=510^{-2} m \\
& \Rightarrow P=58 W
\end{aligned}
$$

(2) Thin is obtained from

Set up the nate-equationt and assume statistical equititonumet.

$$
\frac{N_{u}}{N_{l}}=\frac{c_{m} \cdot n}{c_{w} n+A_{u l}} \Rightarrow \frac{C_{m}}{C_{u l}}=\frac{N_{u}}{N_{l}}\left(1+\frac{A_{u}}{n \cdot c_{u}}\right)
$$

Also

$$
\begin{aligned}
& \frac{N_{n}}{N_{e}}=\frac{g_{1}}{g_{l}} e^{-h h_{u} / h_{i} T_{\text {ex }}} \quad \text { Calculate } t_{\text {ex }} \text { using the } \\
& \text { Solution to in dratue trinster eq. } \\
& \text { Tb } T_{b g} e^{-\tau_{0}}+T_{e x}\left(1-e^{-\tau}\right) \Rightarrow \Pi_{e x}-22129 \mathrm{~K} \\
& \Rightarrow-\frac{V_{m}}{N_{k}} \sim 2,366 \Rightarrow \frac{c_{m}}{c_{m}}=2,517 \Rightarrow \nabla_{1}=30,1230 \mathrm{~K}
\end{aligned}
$$

(3) al

$$
\nabla \times \nabla \times \ddot{H}=(\sigma \times 4 c d B+E
$$

$$
\nabla^{2} \vec{H}=-\omega^{2} \mu_{0} \varepsilon_{c} \vec{H}^{\prime}, c_{c}=\varepsilon_{d}\left(1+\frac{\partial}{1 \varepsilon_{d}}\right)
$$

b)
fame andeltab ampl phate ad 2 at \hat{x}

$$
\begin{aligned}
& \vec{H}(\vec{r})=\left\{(1+j) \hat{x}+\sqrt{2} e^{p / 4} \hat{2}\right\} e^{-1} \\
& \vec{E}=\overrightarrow{1}, \vec{V} \underbrace{2} \\
& E=\eta_{0} \vec{y}_{x} \hat{y}=\eta_{0} \sqrt{2} e^{4}(x+\hat{y}+\hat{2} y) E^{2}+ \\
& =n \sqrt{2} e^{1 / 4}\left(\frac{1}{2}-x^{-} e^{-y}\right. \\
& \underset{E}{E}(y, t)=R_{e}\left\{E\left(y_{0}\right) e^{\omega t}\right\}= \\
& =\eta_{0} \sqrt{2} \cos (\omega t-\beta y+\pi / 4) \hat{2} \\
& -y_{0} \sqrt{2} \cos (1-B y+\pi) x
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \times \vec{H}=\overrightarrow{3}+j \vec{y} \vec{D} \\
& \nabla \times \vec{B}=\sigma \vec{E}+j u 6 d \vec{E}=\operatorname{covinkd)\vec {E}}
\end{aligned}
$$

(4) we dmd that $\frac{\sigma}{46}=\frac{0.1}{20 \cdot 106 \cdot 4 \cdot 9 \cdot 5^{107}}=71$
$\Rightarrow g 00 d$ cosduecor

a/ Maretagm $\lambda=\frac{2 \pi}{k} \leq 10 \cdots$
b)

$$
\begin{aligned}
& E(z=0)=y \quad 3 \cdot 10-2 y
\end{aligned}
$$

$$
\begin{aligned}
& \frac{E(2)}{E(0)}-\frac{18}{2}-\frac{1.194}{3}=0.368 \\
& 9-a z=+2 \hbar 0.36=11 \Rightarrow \\
& \Rightarrow z=0=\frac{1}{2}=159 m \quad(54 m \operatorname{sen})
\end{aligned}
$$

(5) $\quad n^{2}=1-a_{p}^{2} / \omega^{2}$
propagotion $: k=\left(\Lambda k_{0}\right)=\omega \sqrt{\mu_{0} \varepsilon}=\frac{\omega}{c_{0}} n$

$$
k=\frac{\omega}{c_{0}} \sqrt{1}-\frac{\omega_{0}^{2}}{\omega^{2}}=\frac{1}{c_{0} N} \sqrt{\omega^{2}} \omega^{\omega^{2}}
$$

Pulte propagates at th group velugily:

$$
V_{g}=\frac{d \omega}{d u}=\frac{1}{\frac{d k}{d \omega}}=4_{0} \sqrt{1-\frac{w^{2}}{\omega^{2}}}, \omega_{p}+20 \cdot 8 \cdot 106
$$

a) $f_{1}=10 M M_{t} ; \quad 7=\frac{k}{v_{1}}$

$$
A_{2}=600: 10 n_{2} ; \sigma_{2}=\frac{e_{1}}{V_{52}} \quad, V_{12} \approx C_{0}
$$

$$
\Delta T=T_{n}+\frac{1}{2}=e\left(\frac{1}{U_{0}}-\frac{1}{c_{0}}\right)
$$

$$
v_{1}=86 \sqrt{1-\left(\frac{8+10^{62}}{x_{0}-46}\right)}=0,6 c 0
$$

$$
\Rightarrow \Delta T=\frac{800 \cdot 10}{3 \cdot 10^{3}}\left(\frac{1}{0.6}-1\right)=2 \cdot 210155
$$

Phase velocity cof tuave mprt varos with

$$
2 \Rightarrow r a y \text { bends }
$$

(6)

a) $n_{1} \sqrt{n a n}=\sqrt{2+2}=1248$

$$
\begin{aligned}
& z_{2}=\eta_{2}, z_{1}=\frac{n_{1}^{2}}{2}-\frac{n_{1}^{2}}{y_{2}}=\left(\eta_{2} \frac{n_{0}}{n^{2}}\right) \\
& =\frac{n_{0} n_{2}}{n^{2}} \\
& \text { IA }=\frac{z_{1}-n_{0}}{2, n_{0}}=\frac{n_{2}-n_{1}^{2}}{n_{2}+n_{1}^{2}}-\frac{2.2-1.38^{2}}{2.2+1.38^{2}}=0.07 \\
& T,(0)=\frac{E-}{E+} \Rightarrow E-0.07 E \\
& z=0 \quad E \quad E O \Rightarrow E=0.07 E 0 \\
& \hat{E}-\left(\frac{5}{5}=\hat{y} 0.47 E, e^{-j 6 z}, \frac{\hbar}{k}=6\right.
\end{aligned}
$$

Smeec ampftaide reflected usave not conipletaty reftectanhest smae $\eta_{1}+7$,
(7)

$$
n \sin \theta=n \sin \theta \theta \theta^{\prime}=32 \cdot 77^{\circ}
$$

Incommg freld is unpolarifed

$$
\Rightarrow 50 \% 7 E+50 / 6 T 19
$$

$$
f=600 \cdot 1042
$$

cakulate reflectoon cueffereph:
TE-rase:

$$
\begin{aligned}
& =\frac{0.845}{1.845}=-0.458
\end{aligned}
$$

TM1-anse:

$$
\begin{aligned}
& =\frac{0.041}{1 \cdot 641}=0-025
\end{aligned}
$$

The Qegree af polensakn is naqाty 1 (100% conrespenapo ta pophtzed wavest the reason is hut we are croce do the Bourter
 Shows that reflectron can poduce polandal waues.
For nprmal inctetcnce ρ tel $\operatorname{Fran} \Rightarrow \delta=0$, eflectel wave is unpplarised (as ingoming filed)
(8.)

人ेmppage

a) ube $\operatorname{paracha}$ a

$$
\begin{aligned}
& \Rightarrow \quad \vec{E}=\frac{k^{2} p_{0}}{4 \lambda \varepsilon_{0} r} e^{-j t}\left[\begin{array}{lll}
\hat{\theta} & \theta_{1} \theta_{1}-j \hat{\theta} & \cos \theta_{1}
\end{array}\right] \\
& \Rightarrow \vec{E} \operatorname{cr}, \theta, \varphi, t]=-\frac{k^{2} p_{0}}{4 \pi \varepsilon_{0}+}\{\cos (4 t-\operatorname{kr}) \sin \theta \\
& +\cos (x t e \operatorname{ter}-\pi / 2) \operatorname{cod} \theta \hat{1})^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& -60+44(\operatorname{kn}-\pi)(p+\theta)
\end{aligned}
$$

$$
\left.=\frac{1}{2 \eta_{0}\left|\frac{e^{2} \operatorname{le}^{2} r}{\mid}\right|} \right\rvert\, a+c=0
$$

