IMAGE PROCESSING (RRY025)

One of the Exams in 2008/2009

1 IMAGE ENHANCEMENT

Two students of this course, X and Y , want to test their understanding of image enhancement.
(a) X asks Y to enhance a 4 -bit image of size 4×4 by histogram equalization. X sends the image by horizontal raster scanning:
$15,1,2,12,4,10,9,7,8,6,5,11,3,13,14,0$.
Y receives this image and breaks into a laugh! Can you explain why? [2 points]
(b) X then sends a 2-bit image of the same size:
$1,1,2,2,2,1,3,1,1,1,0,1,1,2,2,1$.
How does Y equalize the histogram of this image? What is the output image? Any comment on the output histogram? [3 points]
(c) Now Y asks X to equalize the histogram of an image in which the gray level is equal everywhere. How do the output and input images differ in this case? [2 points]
(d) Finally, X and Y want to do some experiments involving exponential noise, for which the probability distribution function is $p(x)=a e^{-a x}$ if $x \geq 0$, and $p(x)=0$ otherwise. The problem is that their toolbox has a command to generate only uniform noise, for which the probability distribution function is $q(y)=1$ if $0 \leq y \leq 1$, and $q(y)=0$ otherwise. How can they generate exponential noise? [3 points]

2 WAVELETS

Explain the following points, AND sketch simple diagrams to illustrate them:
(a) the fundamental property of wavelets; [2 points]
(b) the fast wavelet transform; [2 points]
(c) the idea behind data compression using wavelets; [3 points]
(d) the idea behind data de-noising using wavelets; [3 points]

3 IMAGE COMPRESSION

A gang of criminals threaten to paralyse the World Wide Web by transmitting huge images. They will do so unless someone finds a smart way to compress their images efficiently and without loss. You accept the challenge. Warm up your brain [(a) and (b)], and save the world [(c) and (d)]!
(a) Consider the same image as in $\mathbf{1 (a)}$ (image enhancement). What is the theoretical maximum compression without loss, if each pixel is coded separately? Note now that this image is a magic square: the sum of the elements in each row, or in each column, or in each diagonal is the same. Using such information, how much can you surely compress this image without loss? And why can you compress more than the theoretical maximum evaluated above? [2 points]
(b) Consider the same image as in $\mathbf{1 (b)}$ (image enhancement). How much can you compress this image by Huffman coding each pixel separately? [2 points]
(c) In order to give you a chance to understand, the criminals send a 6-bit miniature image of size 4×4 by horizontal raster scanning:
$18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63$.
You deduce that the criminals like mathematics and are predictable. So find a smart way to compress this image efficiently and without loss! If the image had a larger size and obeyed the same mathematical rule, would your compression scheme be more efficient or not? Explain! [3 points]
(d) Finally, the criminals send a 7 -bit miniature image of size 4×4 :
$0,1,3,6,10,15,21,28,36,45,55,66,78,91,105,120$.
Same questions as in (c). [3 points]
brief answers to alessandro's questions
$1(a)$

15	1	2	12
4	10	9	7
8	6	5	11
3	13	14	0

4 bits/pixel
4×4 pixels
\rightarrow The histogram is already flat!

1 (b)

1	1	2	2
2	1	3	1
1	1	0	1
1	2	2	1

2 bits/pixel
4×4 pixels

\Rightarrow| gray level | probability | cumulative
 probability | round to nearest
 multiple of 1/3 | output
 gray level |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $1 / 16$ | $1 / 16$ | $0 / 3$ | 0 |
| 1 | $9 / 16$ | $10 / 16$ | $2 / 3$ | 2 |
| 2 | $5 / 16$ | $15 / 16$ | $3 / 3$ | 3 |
| 3 | $1 / 16$ | $16 / 16$ | $3 / 3$ | 3 |

\rightarrow output:

2	2	3	3
3	2	3	2
2	2	0	2
2	3	3	2

The histogram is badly equalised because of disoretiration and the small number of bits and pixels.
$1(e)$

each pixel has the some gray level n n

N gray levels are passible $\left(2^{\# \text { bits }}\right)$.

$$
0 \leqslant n \leqslant N-1
$$

n occurs with proboubility $=1$
cumulative probability $=1$
output gray level $=N-1$
\Rightarrow the output image is white.
$\underline{1(0)} \int_{0}^{y} q\left(y^{\prime}\right) d y^{\prime}=\int_{0}^{x} p\left(x^{\prime}\right) d x^{\prime}$
as in histogram
matching (equalization)

$$
y=1-e^{-a x}
$$

$$
\Rightarrow x=-\frac{1}{a} \ln (1-y)
$$

2(a) See Sect. 2.1 of Rome et al. (2004) and Fig. 1 of Romeo et al. (2003).

2 (b) See Sect. 2.2 of Romeo et al. (2004) and Fig. 2 of Romeo etal. (2003) [see also Fig. 6 of Romeo et al. (2004)].
$2(c)$ See Sect. 3. 1 of Romeo et al. (2004).
$2(01)$ Se Sect. 3.2 of Romes et al. (2004).
NOTE: The references above are linked from the lecture notes.
$3(a)$ Single-pixel entropy $H_{1}=-\sum_{i=0}^{15} p_{i} \log _{2} p_{i}=4$ bits/pixel.
Theoretical maximum compression $=$ single -pixel entropy

Margie spare ())
How many pixels do we really need to tramanit?

Yes	Yes	Yes	$Y_{e s}$
Yes	Yes	$Y_{\text {es }}$	N_{0}
$Y_{e s}$	Yes	$Y_{e s}$	N_{0}
N_{0}	N_{0}	N_{0}	N_{0}

$$
10 \text { pixels } \Rightarrow \text { compression }=1.6 ;
$$

or, leg. | Y | Y | Y | Y |
| :--- | :--- | :--- | :--- |
| Y | Y | Y | N |
| N | Y | Y | N |
| N | N | N | N |

9 pixels \Rightarrow higher compression $\simeq 1.8$, but mare difficult to transmit.
\Rightarrow compression $>$ theoretical maximum...
because pixels are correlated and we are reducing inter-pixel redundancy.
$3(b)$

gray level	probability		Huffman code	length
1	$9 / 16$			
2	$5 / 16$	0	0	1
0	$1 / 16$	0	1	1
3	$1 / 16$		0	1

Mean Huffman-code length $N_{\text {mean }}=\sum_{i=0}^{3} p_{i} N_{i} \simeq 1.6$ bit//pixel.
\rightarrow compression $\simeq 1.3$ (the original image has 2 bits/pixel).
$3(e)$

18	21	24	27
30	33	36	39
42	45	48	51
54	57	60	63

6 bits/pixel
4×4 pixels
\Rightarrow Lossless predictive coding: $\bar{f}_{n}=f_{n-1}$

18	3	3	3
3	3	3	3
3	3	3	3
3	3	3	3

$$
l_{n}=f_{n}-\bar{f}_{n}=f_{n}-f_{n-1}
$$

\rightarrow Run length cooling: ${\underset{\sim}{1}}_{(3,15)}^{(3)}$
6 bits +7 bits +4 bits $=17$ bits
original \#bits $=96$ bits
compression $\simeq 5.6$.
NOTE: minimum number of assumptions!
$3(e)$ Lorger-sire innouge, l.g.
continued

18	21	24	27	30
33	36	39	42	45
48	51	54	57	60
63	66	69	72	75
78	81	84	87	90

7 bits/pixel
5×5 pixels
\Rightarrow same cooling as before

7 bits +8 bits +5 bits $=20$ bits
original \# bits $=175$ bits
\Rightarrow compression $\simeq 8.8$,
higher efficiency!
NOTE: a rigaraus generalization is non-trivial!

But the trend is clear!!
$3(01)$

0	1	3	6
10	15	21	28
36	45	55	66
78	91	105	120

7 bits / pixel
4×4 pixels
\Rightarrow Lossless predictive coding: $\bar{f}_{n}=2 f_{n-1}-f_{n-2}$ (gradien t-based)

(0)	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

$$
l_{n}=f_{n}-\bar{f}_{n}=f_{n}-2 f_{n-1}+f_{n-2}
$$

\rightarrow Run length coding: (0) (1) $(1,14)$

$$
\begin{aligned}
\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow{ }_{7 \text { bit }+7 \text { bits }_{4}+9 \text { bits }+4 \text { bits }} & =27 \text { bits } \\
\text { original \# bits } & =112 \text { bits }
\end{aligned}
$$

\Rightarrow compression $\simeq 4 \cdot 1$. (same note as in Be).
Larger-size image, ecg.

9 bits / pixel
5×5 pixels

9 bits +9 bits +11 bits +5 bits $=34$ bits
original \#bits $=225$ bits
\rightarrow compression $\simeq 6.6$,
higher efficiency! (some note as in Se).

