IMAGE PROCESSING (RRY025)

One of the Exams in 2008/2009

1 IMAGE ENHANCEMENT

Two students of this course, X and Y, want to test their understanding of image enhancement.

(a) X asks Y to enhance a 4-bit image of size 4 × 4 by histogram equalization. X sends the image by horizontal raster scanning:

15, 1, 2, 12, 4, 10, 9, 7, 8, 6, 5, 11, 3, 13, 14, 0.

Y receives this image and breaks into a laugh! Can you explain why? [2 points]

(b) X then sends a 2-bit image of the same size:

1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 0, 1, 1, 2, 2, 1.

How does Y equalize the histogram of this image? What is the output image? Any comment on the output histogram? [3 points]

- (c) Now Y asks X to equalize the histogram of an image in which the gray level is equal everywhere. How do the output and input images differ in this case? [2 points]
- (d) Finally, X and Y want to do some experiments involving exponential noise, for which the probability distribution function is $p(x) = a e^{-ax}$ if $x \ge 0$, and p(x) = 0 otherwise. The problem is that their toolbox has a command to generate only uniform noise, for which the probability distribution function is q(y) = 1 if $0 \le y \le 1$, and q(y) = 0 otherwise. How can they generate exponential noise? [3 points]

2 WAVELETS

Explain the following points, AND sketch simple diagrams to illustrate them:

- (a) the fundamental property of wavelets; [2 points]
- (b) the fast wavelet transform; [2 points]
- (c) the idea behind data compression using wavelets; [3 points]
- (d) the idea behind data de-noising using wavelets; [3 points]

3 IMAGE COMPRESSION

A gang of criminals threaten to paralyse the World Wide Web by transmitting huge images. They will do so unless someone finds a smart way to compress their images efficiently and without loss. You accept the challenge. Warm up your brain [(a) and (b)], and save the world [(c) and (d)]!

- (a) Consider the same image as in 1(a) (image enhancement). What is the theoretical maximum compression without loss, if each pixel is coded separately? Note now that this image is a magic square: the sum of the elements in each row, or in each column, or in each diagonal is the same. Using such information, how much can you surely compress this image without loss? And why can you compress more than the theoretical maximum evaluated above? [2 points]
- (b) Consider the same image as in 1(b) (image enhancement). How much can you compress this image by Huffman coding each pixel separately? [2 points]
- (c) In order to give you a chance to understand, the criminals send a 6-bit miniature image of size 4×4 by horizontal raster scanning:

18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63.

You deduce that the criminals like mathematics and are predictable. So find a smart way to compress this image efficiently and without loss! If the image had a larger size and obeyed the same mathematical rule, would your compression scheme be more efficient or not? Explain! [3 points]

(d) Finally, the criminals send a 7-bit miniature image of size 4 × 4:
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120.
Same questions as in (c). [3 points]

BRIEF ANSWERS TO ALESSANDRO'S QUESTIONS

1 (a) 4 bits/pixel 15 12 1 2 7 4 9 4×4 pixels 10 8 6 5 11 3 → The histogram is orbready flart! 13 14 0

J

NN NG GOD I								
	1	1	2	2				
	2	1	3	1	Ī			
	1	1	D	1.				
	1	2	2	1				

2 bits/pixel 4×4 pixels

	gray level	probability	cumulative probability	round to neorest multiple of 1/3	output gray level
	0	1/16	1/16	0/3	0
	1	9/16	10/16	2/3	2
	2	5/16	15116	3/3	3
	3	1/16	16/16	3/3	3

→ <u>output</u>:

The histogram is badly equalized because of disortization and the small number of bits and pixels.

1

1 (e)
	$-\frac{m}{m}\frac{m}{m}-\frac{1}{m}-\frac{1}{m}=0 \le m \le N-1$
	each pixel has the output gray level $= N-1$ some gray level m \Rightarrow the output image is white.
1(0	$\int_{0}^{9} q(y') dy' = \int_{0}^{\infty} p(x') dx' \qquad \left[\begin{array}{c} \cos in histogroum \\ matching (equalimation) \end{array} \right]$
	$y = 1 - \ell$
tuqbuo	$\Rightarrow X = -\frac{1}{a} \ln (1 - y)$
<u>2 (a)</u>	See Sect. 2.1 of Romeo et al. (2004) and Fig. 1 of Romeo et al. (2003).
<u>2(b)</u> E	See Sect. 2.2 of Romeo et al. (2004) and Fig. 2 of Romeo et al. (2003) [see also Fig. 6 of Romeo et al. (2004)].
2(e)	See Sect. 3. 1 of Romeo et al. (2004).
2(0)	See Seet. 3.2 of Romeo et al. (2004).
NOTE	: The references above are linked from the lecture notes.

Single-pixel entropy H1 = - Z pilog2 pi = 4 bits/pixel. 3 (a) Theoretical moximum compremion = # bits/pixel in the image = 1 -> no compression! single-pixel entropy Morgie sophore 🕑 How many pixels do we really need to trammit? Yes Yes Yes 10 pixels -> compression = 1.6; Yes Yes No Yes Yes Y Y Y N N Y Y N 9 pixels → higher compression ~ 1.8, but more difficult or, l.g. to transmit. → compression > theoretical maximum ... become pixels are correlated and we are reducing inter-pixel redundancy.

Congressing an ≈ 5.

3(b)	oray level	probability	Huftman code	length	(4)
	1	9/16 0 1	0	1	
	2	5/16 97/16	10	2	
	0	1/16 2/16	110	3	
i norkan	3	1/16/1	al q la levelo	3	
			1		

Mean Huffman-coole length $N_{min} = \sum_{i=0}^{3} p_i N_i \approx 1.6 \text{ bits/pixel.}$ \Rightarrow compression ≈ 1.3 (the original image has 2 bits/pixel).

<u>3(e)</u>

1	1	-	-
18	21	24	27
30	33	36	39
42	45	48	51
54	57	60	63

6 bits/pixel 4 x 4 pixels

→ Lossless predictive cooling: $\overline{f}_m = \overline{f}_{m-1}$ $m = \overline{f}_m - \overline{f}_m = \overline{f}_m - \overline{f}_{m-1}$ $m = \overline{f}_m - \overline{f}_m = \overline{f}_m - \overline{f}_{m-1}$ $m = \overline{f}_m - \overline{f}_m = \overline{f}_m - \overline{f}_m - \overline{f}_m$ $\overline{f}_m = \overline{f}_m - \overline{f}_m = \overline{f}_m - \overline{f}_m - \overline{f}_m$

f = f + f f = 17 bits f = 17 bits riginal # bits = 36 bits riginal # bits = 36 bits riginal # bits = 5.6. NOTE: minimum number of an unptions!

3 (e) Lourger-rire image, l.g. continued 7 bits/pixel 24 27 21 18 30 39 36 42 33 45 5×5 pixels 60 57 54 48 51 75 66 69 72 63 87 90 78 84 81 same cooling (18)(3, 24)as before 7 bits + 8 bits + 5 bits = 20 bits original # bits = 175 bits → compremion ~ 8.8, higher efficiency! NOTE: a rigorous generalization is non-trivial! But the trend is elear !!

3 (01)	0 1 3 6	7 bits/p	ixel		(6)
3	10 15 21 23 16 45 55 66 18 31 105 120	4 × 4 pa	els		
			45. -		
-> L	orden pred	ietine eopling:	$f_m = 2 f_r$	n-1 - fm-2 (gra	dient-based)
5		1	lm = fm -	$\overline{f}_m = f_m - 2 f_{m-1}$	$-1 + f_{m-2}$
L		(1210)			
→ R	un length	evoling: ()	0 (1,	14)	
		ded of the		1	
		7 bits +	Fbits + 9 bits	+4bits = 27bi	to
		oru az	MOU TT BIK	= 112 bi	
I.			mpremon	$1 \simeq 4.1.$ (some)	note as in 3e).
Lovu	ger-suze in	Norge, e.g.			
0 1	3 6 10	9 bits /1	pixel		
15 2 55 6 120 1 210 2	1 28 36 45 6 78 91 105 36 153 171 190 31 253 276 300	5 x 5 pü	rels		× tin ⊥te
→	some eooling	: () () (1, 23)		
	us ortoa		1 1		
		9 bits + 9 bits + 11 b	its+5bits	= 34 buts	
		original # 1	oits	= 225 bits	
		🔶 comprem	on $\simeq 6$.	6,	
		higher eft	iciency!	(same note as i	m 3e).
			-		