
Chalmers University of Technology, Department of Applied Mechanics
Teacher: Mattias Wahde, tel. 772 3727

Exam in FFR 105 (Evolutionary computation), 2007-10-25, 14.00-18.00, V.
It is allowed to use a calculator, as long as it cannot store any text. Furthermore, math-
ematical tables (such as Beta, Standard Math etc.) are allowed, provided that no notes
have been added. However, it is not allowed to use the handouts (including the problems)
from the course during the exam.

Note! In problems involving computation, show clearly how you arrived at your answer,
i.e. include intermediate steps etc. Only giving the answer will result in zero points on
the problem in question.

There are 5 problems in the exam, and the maximum number of points is 25.

1. (a) Many different selection operators have been defined in connection with evo-
lutionary algorithms. Describe, in detail, the following operators (it is not

necessary to write Matlab code, but your description should be sufficiently de-
tailed to make it possible to write such code based on your text!) (3p):

Roulette-wheel selection
Tournament selection
Boltzmann selection

(b) Particle swarm optimization (PSO) is based on the properties of animal swarms,
such as e.g. bird flocks. One of the most central parts of PSO is the method
for updating particle velocities. Write down and describe the equation for
updating particle velocities in standard PSO! (2p)

(c) A common problem in applications of evolutionary algorithms is premature

convergence. Name (and describe briefly) at least two different methods for
preventing premature convergence. (1p)

(d) In optimization problems, convex objective functions constitute a very impor-
tant special case. How are convex functions defined (mathematically)? Give
also a geometric interpretation (in one dimension) of the definition. (1p)

(e) Is the function
f(x1, x2) = 4x2

1 + 2x2
2 − 2x1x2 (1)

convex or not? Motivate your answer clearly! (1p)

2. Many different analytical and numerical methods have been developed in the field
of classical optimization.

(a) Using the method of Lagrange multipliers, find the minimum value of the
function

f(x1, x2) = x2
1x2 (2)



on R2, subject to the equality constraint

2x6
1 + 3x4

1x
2
2 + 8x6

2 − 36 = 0. (3)

(3p)

(b) Consider the function

g(x1, x2) = x4
1 + x1x2 + x2

2. (4)

Find (and report) the gradient of g(x1, x2) at the point (1, 1)T. Next, starting
from this point, take one step of gradient descent (including the line search
needed to find the minimum along the search direction). Which point (x∗

1, x
∗

2)
is reached after this step? Finally, show that the search direction obtained
in the next gradient descent step is perpendicular to the first search direction
determined above (a numerical demonstration is sufficient, i.e. it is not required
to provide an analytical proof). (3p)

3. Ant colony optimization is an important stochastic optimization method, of which
several different versions have been defined.

(a) One of the first ant-inspired algorithms was ant system (AS). Describe the AS
algorithm in detail, i.e. in the form of a list of steps, with a clear description of
each step. You may use the traveling salesman problem (TSP) as a concrete
example. (2p)

(b) Min-Max Ant System (MMAS) differs from AS in the sense that only the
best ant is allowed to deposit pheromone. Furthermore, in MMAS, pheromone
levels are explicitly constrained to a given range [τmin, τmax]. Let p(K) be the
probability that the optimal solution (for the case of TSP) is encountered (using
MMAS) at least once in the first K generations. Prove that

lim
K→∞

p(K) = 1. (5)

(2p)

4. Consider a case where a genetic algorithm with a binary encoding scheme is to be
used in a problem where the fitness function for a chromosome with k ones is given
by

f(k) = k
2 + (−1)k

3
. (6)

The population size is assumed to be infinite, and it is further assumed that the
chromosomes are initialized randomly so that the probability distribution for the
initial population will be

p1(k) = 2−n

(

n

k

)

, (7)

where n is the length of the chromosomes.

(a) Compute the average fitness for the initial population. (2p)

(b) Find the probability distribution p2(k) after evaluation and (roulette-wheel)
selection, assuming that no mutations take place. (1p)



5. The Schema theorem indicates how so-called building blocks spread in the popula-
tion of a genetic algorithm.

(a) Derive the Schema theorem. Make sure to include all relevant definitions and
intermediate steps in the derivation. In particular, motivate clearly the expres-
sion showing how the expected number of copies of a schema S is expected to
vary from one generation to the next. (2p)

(b) Consider a population of seven individuals with the six–digit binary chromo-
somes

c1 = 010111
c2 = 001101
c3 = 100010
c4 = 101000
c5 = 000111
c6 = 110110
c7 = 110000

In this case, the chromosomes are decoded by multiplying gene i by 26−i so
that c1 → x1 = 0× 25 + 1× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20 = 23 etc. The
chromosomes are used in a GA in order to find the maximum of the simple
function f(x) = 1

(1+x)
for x ≥ 0. Consider the schema S1 =10xxxx. Assuming

pc = 0.75 and pmut = 0.01, what is the expected number of copies of S1 in the
next generation, according to the schema theorem? (2p)



Evolutionary computation (FFR 105), 2007
Solutions to the exam (2007-10-25)

1. (a) See Chapter 3 of the book. It is important to list the equations showing how
the selection is carried out in the different cases.

(b) See Chapter 5. The velocity update is made according to

vi,j ← wvi,j + c1q





xpb
i,j − xi,j

∆t



+ c2r

(

xsb
j − xi,j

∆t

)

, i = 1, . . . , N, j = 1, . . . , n

(1)
where w is the inertia weight that regulates the trade-off between exploita-
tion and exploration. The term proportional to c1 is the cognitive component,
which measures the degree to which a particle trusts its own previous perfor-
mance as a guide towards obtaining better results. The term proportional to
c2 is the social component of the velocity update, and it measures the degree
to which a particle trusts the ability of the other members of the swarm to
find good solutions. Commonly, velocities are also limited to a specific range
[−vmax, vmax].

(c) See Chapter 3. Examples include the use of sub-populations or a varying
mutation rate.

(d) Convex functions fulfill the inequality

f (ax1 + (1− a)x2) ≤ af(x1) + (1− a)f(x2), (2)

for any x1,x2 ∈ S (where S is a convex set) and for all a ∈ [0, 1]. The geometric
interpretation is that the function values lie ”below” the straight line joining
x1 and x2.

(e) The convexity of a function can be investigated by considering the properties
of the Hessian. For the function in question, the Hessian equals

H =





∂2f

∂x2

1

∂2f

∂x1∂x2

∂2f

∂x1∂x2

∂2f

∂x2

2



 =

(

8 -2
-2 4

)

, (3)

with eigenvalues 6± 2
√

2 which are both larger than zero. Thus, the function
is convex.

2. (a) The function L(x1, x2, λ) takes the form

L = x2
1x2 + λ(2x6

1 + 3x4
1x

2
2 + 8x6

2 − 36). (4)

Setting the derivatives of L to zero, one obtains the equations

∂L

∂x1

= 2x1x2 + λ(12x5
1 + 12x3

1x
2
2) = 0 (5)

∂L

∂x2

= x2
1 + λ(6x4

1x2 + 48x5
2) = 0 (6)

∂L

∂λ
= 2x6

1 + 3x4
1x

2
2 + 8x6

2 − 36 = 0. (7)



Now, multipliying the first equation by x1 and the second one by 2x2, and
subtracting the results, the equation

12x6
1 − 96x6

2 = 0. (8)

is obtained. Assuming that x1 and x2 are different from zero (the exceptions
will be handled later), the solution to this equation is

x1 = ±
√

2x2. (9)

Inserting this expression into the constraint equation one obtains

36x6
2 − 36 = 0, (10)

so that x2 = ±1. Thus, the four points that must be considered are (
√

2, 1),
(−
√

2, 1), (
√

2,−1), (−
√

2,−1). Examining these four points, it easy to see
that the minimum value is −2. The cases x1 = 0 and x2 = 0 can be discarded
since they would give a value of 0 > −2.

(b) The gradient is given by

∇f =
(

4x3
1 + x2, x1 + 2x2

)T
. (11)

Thus, at (1, 1)T, the gradient equals (5, 3)T. The new point reached via gradient
descent from (1, 1)T thus takes the form

x
new = x

old − η∇f = (1− 5η, 1− 3η)T. (12)

Inserting this expression in the function g(x1, x2), the function

φ(η) = (1− 5η)4 + (1− 5η)(1− 3η) + (1− 3η)2 (13)

is obtained. Using the bisection method starting from, say, the interval [0, 1],
the minimum is found to occur at η∗ ≈ 0.272125. Thus, the point reached will
be

(1− 5η∗, 1− 3η∗)T ≈ (−0.3606, 0.1836)T. (14)

At this point, the gradient equals (−0.00397, 0.006625)T. Finally, it is easy to
verify that the scalar product of this vector and the original gradient (5, 3)T is
equal to zero, showing that the two vectors are ortogonal, i.e. that the search
directions are perpendicular to each other.

3. (a) Description of AS, see Chapter 4.

(b) Proof: See the Appendix B.3.2

4. From the equation (the binomial distribution)

(a + b)n =
n
∑

k=0

(

n

k

)

akbn−k, (15)

we get (with a = −1 and b = x)

(x− 1)n =
n
∑

k=0

(

n

k

)

(−1)n−kxk = (−1)n
n
∑

k=0

(

n

k

)

(−1)kxk. (16)



((−1)−k can be exchanged for (−1)k). Inserting x = 1 we find

0 =
n
∑

k=0

(

n

k

)

(−1)k (17)

Differentiation of Eq. (16) w.r.t. x gives

n(x− 1)n−1 = (−1)n
n
∑

k=0

k(−1)kxk−1. (18)

Insertion of x = 1 gives

0 = n(1− 1)n−1 =
n
∑

k=0

k(−1)k

(

n

k

)

. (19)

Thus, the average fitness value for the initial population becomes

f1 =
n
∑

k=0

f(k)p1(k) =
n
∑

k=0

k
2 + (−1)k

3
2−n

(

n

k

)

=

=
2

3
2−n

n
∑

k=0

k2−n

(

n

k

)

+
1

2
2−n

n
∑

k=0

k(−1)k

(

n

k

)

. (20)

The last sum equals zero, and the first sum can be computed by inserting a = x, b =
1 in the binomial distribution, and then differentiating the result

n
∑

k=0

k

(

n

k

)

= n2n−1. (21)

Insertion of Eq. (21) in Eq. (20) gives

f1 =
n

3
. (22)

Thus, the probability distribution after selection is given by

p2(k) =
f(k)p1(k)

∑n
k=0 f(k)p1(k)

. (23)

Insertion of Eq. (22) in Eq. (23) gives, finally

p2(k) = 2−n
(

2 + (−1)k
) k

n

(

n

k

)

. (24)

5. (a) Derivation of the schema theorem, see Appendix B.2.1.

(b) When decoded, the seven chromosomes give the following variable values: x1 =
23, x2 = 13, x3 = 34, x4 = 40, x5 = 7, x6 = 54, x7 = 48, from which the fitness
values easily can be computed as fi = 1/(1 + xi). The average fitness f equals
0.04709, and the average fitness of S1 equals f(S1) = 0.02648. Inserting these
numbers, and the parameters given in the problem formulation, in the schema
theorem, the resulting expected number of copies of S1 becomes 0.93 ≈ 1.

Mattias Wahde, 2007-10-25


