Mathematics Chalmers \& GU

TMA372/MMG800: Partial Differential Equations, 2010-03-08; kl 8.30-13.30.
Telephone: Oskar Hamlet: 0703-088304
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 7p. Valid bonus poits will be added to the scores.
Breakings: 3: $20-29$ p, 4: $30-39$ p och 5: 40p- For GU G students :20-35p, VG: 36 p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/0910/index.html

1. Let $f \in C^{2}(a, b)$ and prove the following interpolation error estimate in the L_{∞} norm,

$$
\left\|f-\pi_{1} f\right\|_{L_{\infty}(a, b)} \leq(b-a)^{2}\left\|f^{\prime \prime}\right\|_{L_{\infty}(a, b)}
$$

2. Consider the initial value problem: $\quad \dot{u}(t)+a u(t)=0, \quad t>0, \quad u(0)=1$.
a) Let $a=40$, and the time step $k=0.1$. Draw the graph of $U_{n}:=U(n k), k=1,2, \ldots$, approximating u using (i) explicit Euler, (ii) implicit Euler, and (iii) Cranck-Nicholson methods. b) Consider the case $a=i$, $\left(i^{2}=-1\right)$, having the complex solution $u(t)=e^{-i t}$ with $|u(t)|=1$ for all t. Show that this property is preserved in Cranck-Nicholson approximation, i.e. $\left|U_{n}\right|=1$, but not in any of the Euler approximations.
3. Let α and β be positive constants. Give the piecewise linear finite element approximation procedure and derive the corresponding stiffness matrix, mass matrix and load vector using the uniform mesh with size $h=1 / 4$ for the problem

$$
-u^{\prime \prime}(x)+u=1, \quad 0<x<1 ; \quad u(0)=\alpha, \quad u^{\prime}(1)=\beta
$$

4. Let p be a positive constant. Prove an a priori and an a posteriori error estimate (in the H^{1}-norm: $\|e\|_{H^{1}}^{2}=\left\|e^{\prime}\right\|^{2}+\|e\|^{2}$) for a finite element method for problem

$$
-u^{\prime \prime}+p x u^{\prime}+\left(1+\frac{p}{2}\right) u=f, \quad \text { in }(0,1), \quad u(0)=u(1)=0
$$

5. Consider the initial boundary value problem for the heat equation

$$
\left\{\begin{array}{lll}
\dot{u}-\Delta u=0, & x \in \Omega \subset \mathbb{R}^{2}, & 0<t \leq T \\
u(x, t)=0, & x \in \partial \Omega, & 0<t \leq T \\
u(x, 0)=u_{0}(x), & x \in \Omega &
\end{array}\right.
$$

Prove the following stability estimates

$$
\begin{gather*}
\|u\|^{2}(t)+2 \int_{0}^{t}\|\nabla u\|^{2}(s) d s=\left\|u_{0}\right\|^{2} \\
\text { ii) } \quad \int_{0}^{t} s\|\Delta u\|^{2}(s) d s \leq \frac{1}{4}\left\|u_{0}\right\|^{2}, \quad \text { and } \quad \text { iii } \quad \quad\|\nabla u\|(t) \leq \frac{1}{\sqrt{2 t}}\left\|u_{0}\right\| .
\end{gather*}
$$

6. Consider the convection-diffusion problem

$$
-\operatorname{div}(\varepsilon \nabla u+\beta u)=f, \text { in } \Omega \subset \mathbb{R}^{2}, \quad u=0, \text { on } \quad \partial \Omega,
$$

where Ω is a bounded convex polygonal domain, $\varepsilon>0$ is constant, $\beta=\left(\beta_{1}(x), \beta_{2}(x)\right)$ and $f=f(x)$. Determine the conditions in the Lax-Milgram theorem that would guarantee existence of a unique solution for this problem. Prove a stability estimate for u i terms of $\|f\|_{L_{2}(\Omega)}, \varepsilon$ and $\operatorname{diam}(\Omega)$, and under the conditions that you derived.

MA
void!

TMA372/MMG800: Partial Differential Equations, 2010-03-08; kl 8.30-13.30.. Lösningar/Solutions.

1. See Lecture Notes or the text book, Chapter 5 .
2. a) With $a=40$ and $k=0.1$ we get the explicit Euler:

$$
\left\{\begin{array} { l }
{ U _ { n } - U _ { n - 1 } + 4 0 \times (0 . 1) U _ { n - 1 } = 0 , } \\
{ U _ { 0 } = 1 . }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
U_{n}=-3 U_{n-1}, \quad n=1,2,3, \ldots, \\
U_{0}=1 .
\end{array}\right.\right.
$$

Implicit Euler:

$$
\left\{\begin{array}{l}
U_{n}=\frac{1}{1+40 \times(0.1)} U_{n-1}=\frac{1}{5} U_{n-1}, \quad n=1,2,3, \ldots, \\
U_{0}=1 .
\end{array}\right.
$$

Cranck-Nicolson:

$$
\left\{\begin{array}{l}
U_{n}=\frac{1-\frac{1}{2} \times 40 \times(0.1)}{1+\frac{1}{2} \times 40 \times(0.1)} U_{n-1}=-\frac{1}{3} U_{n-1}, \quad n=1,2,3, \ldots, \\
U_{0}=1 .
\end{array}\right.
$$

b) With $a=i$ we get

Explicit Euler

$$
\left|U_{n}\right|=|1-(0.1) \times i|\left|U_{n-1}\right|=\sqrt{1+0.01}\left|U_{n-1}\right| \Longrightarrow\left|U_{n}\right| \geq\left|U_{n-1}\right| .
$$

Implicit Euler

$$
\left|U_{n}\right|=\left|\frac{1}{1+(0.1) \times i}\right|\left|U_{n-1}\right|=\frac{1}{\sqrt{1+0.01}}\left|U_{n-1}\right| \leq\left|U_{n-1}\right| .
$$

Crank-Nicolson

$$
\left|U_{n}\right|=\left|\frac{1-\frac{1}{2}(0.1) \times i}{1+\frac{1}{2}(0.1) \times i}\right|\left|U_{n-1}\right|=\left|U_{n-1}\right| .
$$

3. Multiply the pde by a test function v with $v(0)=0$, integrate over $x \in(0,1)$ and use partial integration to get

$$
\begin{align*}
& -\left[u^{\prime} v\right]_{0}^{1}+\int_{0}^{1} u^{\prime} v^{\prime} d x+\int_{0}^{1} u v d x=\int_{0}^{1} v d x \quad \Longleftrightarrow \\
& -u^{\prime}(1) v(1)+u^{\prime}(0) v(0)+\int_{0}^{1} u^{\prime} v^{\prime} d x+\int_{0}^{1} u v d x=\int_{0}^{1} v d x \quad \Longleftrightarrow \tag{1}\\
& -\beta v(1)+\int_{0}^{1} u^{\prime} v^{\prime} d x+\int_{0}^{1} u v d x=\int_{0}^{1} v d x
\end{align*}
$$

The continuous variational formulation is now formulated as follows: Find

$$
(V F) \quad u \in V:=\left\{w: \int_{0}^{1}\left(w(x)^{2}+w^{\prime}(x)^{2}\right) d x<\infty, \quad w(0)=\alpha\right\}
$$

such that

$$
\int_{0}^{1} u^{\prime} v^{\prime} d x+\int_{0}^{1} u v d x=\int_{0}^{1} v d x+\beta v(1), \quad \forall v \in V^{0}
$$

where

$$
V^{0}:=\left\{v: \int_{0}^{1}\left(v(x)^{2}+v^{\prime}(x)^{2}\right) d x<\infty, \quad v(0)=0\right\}
$$

For the discrete version we let \mathcal{T}_{h} be a uniform partition: $0=x_{0}<x_{1}<\ldots<x_{N+1}$ of [0,1] into the subintervals $I_{n}=\left[x_{n-1}, x_{n}\right], n=1, \ldots N+1$. Here, we have N interior nodes: $x_{1}, \ldots x_{N}$, two boundary points: $x_{0}=0$ and $x_{N+1}=1$ (see Fig. below for $N=3, h=1 / 4$, and hence $N+1=4$ intervals).

We shall keep the general framework and let $N=3, h=1 / 4$ at the very end. The finite element method (discrete variational formulation) is now formulated as follows: Find

$$
(F E M) \quad u_{h} \in V_{h}:=\left\{w_{h}: w_{h} \text { is piecewise linear and continuous on } \mathcal{T}_{h}, w_{h}(0)=\alpha\right\}
$$

such that

$$
\begin{equation*}
\int_{0}^{1} u_{h}^{\prime} v_{h}^{\prime} d x+\int_{0}^{1} u_{h} v_{h} d x=\int_{0}^{1} v_{h} d x+\beta v_{h}(1), \quad \forall v \in V_{h}^{0} \tag{2}
\end{equation*}
$$

where

$$
V_{h}^{0}:=\left\{v_{h}: v_{h} \text { is piecewise linear and continuous on } \mathcal{T}_{h}, v_{h}(0)=0\right\}
$$

Using the basis functions $\varphi_{j}, j=0, \ldots N+1$, where $\varphi_{1}, \ldots \varphi_{N}$ are the usual hat-functions whereas φ_{0} and φ_{N+1} are semi-hat-functions viz;

$$
\varphi_{j}(x)=\left\{\begin{array}{ll}
0, & x \notin\left[x_{j-1}, x_{j}\right] \tag{3}\\
\frac{x-x_{j-1}}{h} & x_{j-1} \leq x \leq x_{j} \quad, \quad j=1, \ldots N . \\
\frac{x_{j+1}-x}{h} & x_{j} \leq x \leq x_{j+1}
\end{array} \quad . \quad .\right.
$$

and

$$
\varphi_{0}(x)=\left\{\begin{array}{ll}
\frac{x_{1}-x}{h} & 0 \leq x \leq x_{1} \\
0, & x_{1} \leq x \leq 1
\end{array}, \quad \varphi_{N+1}(x)= \begin{cases}\frac{x-x_{N}}{h} & x_{N} \leq x \leq x_{N+1} \\
0, & 0 \leq x \leq x_{N}\end{cases}\right.
$$

In this way we may write

$$
V_{h}=\alpha \varphi_{0} \oplus\left[\varphi_{1}, \ldots, \varphi_{N+1}\right], \quad V_{h}^{0}=\left[\varphi_{1}, \ldots, \varphi_{N+1}\right] .
$$

Thus every $u_{h} \in V_{h}$ can be written as $u_{h}=\alpha \varphi_{0}+v_{h}$ where $v_{h} \in V_{h}^{0}$, i.e.,

$$
u_{h}=\alpha \varphi_{0}+\xi_{1} \varphi_{1}+\ldots \xi_{N+1} \varphi_{N+1}=\alpha \varphi_{0}+\sum_{j=1}^{M+1} \xi_{j} \varphi_{j} \equiv \alpha \varphi_{0}+\tilde{u}_{h}
$$

where $\tilde{u}_{h} \in V_{h}^{0}$. Hence the problem (2) can equivalently be formulated as follows
$\int_{0}^{1}\left(\alpha \varphi_{0}^{\prime}+\sum_{i=1}^{N+1} \xi_{j} \varphi_{j}^{\prime}\right) \varphi_{i}^{\prime} d x+\int_{0}^{1}\left(\alpha \varphi_{0}+\sum_{i=1}^{N+1} \xi_{j} \varphi_{j}\right) \varphi_{i} d x=\int_{0}^{1} \varphi_{i} d x+\beta \varphi_{i}(1), \quad i=1, \ldots N+1$, or, more specifically, as: For $i=1, \ldots N+1$, find ξ_{j} from the following linear system of equations:
$\sum_{j=1}^{N+1}\left(\int_{0}^{1} \varphi_{i}^{\prime} \varphi_{j}^{\prime} d x\right) \xi_{j}+\sum_{j=1}^{N+1}\left(\int_{0}^{1} \varphi_{i} \varphi_{j} d x\right) \xi_{j}+=-\alpha \int_{0}^{1} \varphi_{0}^{\prime} \varphi_{i}^{\prime} d x-\alpha \int_{0}^{1} \varphi_{0} \varphi_{i} d x+\int_{0}^{1} \varphi_{i} d x+\beta \varphi_{i}(1)$,
or equivalently $A \xi=\mathbf{b}$ where $A=S+M$ with $S=\left(s_{i j}\right)$ being the stiffness matrix and $M=\left(m_{i j}\right)$ the mass matrix. Now, since we have a uniform mesh with $N=3$; the standard values for entries of these matrices are as follows

$$
s_{i i}=2 / h, \quad a_{i, i+1}=a_{i+1, i}=-1 / h, \quad i=1, \ldots N, \quad \text { and } \quad a_{N+1, N+1}=1 / h
$$

and

$$
m_{i i}=2 h / 3, \quad a_{i, i+1}=a_{i+1, i}=h / 6, \quad i=1, \ldots N, \quad \text { and } \quad a_{N+1, N+1}=h / 3
$$

Now we return to our specific basis functions as in the Figure above $(N+1=4, h=1 / 4)$, note that φ_{4} is a half-hat function. Then

$$
A=4\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]+\frac{1}{24}\left[\begin{array}{llll}
4 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

and the unknown $\xi:=\left[\xi_{1} \xi_{2}, \xi_{3}, \xi_{4}\right]^{t}$ is determined by solving $A \xi=\mathbf{b}$, with A as above and the load vector \mathbf{b} given by

$$
\mathbf{b}=\left[\begin{array}{l}
-\alpha \int_{0}^{1} \varphi_{0}^{\prime} \varphi_{1}^{\prime} d x-\alpha \int_{0}^{1} \varphi_{0} \varphi_{1} d x+\int_{0}^{1} \varphi_{1} d x \\
\int_{0}^{1} \varphi_{2} d x \\
\int_{0}^{1} \varphi_{3} d x \\
\int_{0}^{1} \varphi_{4} d x+\beta \varphi_{4}(1)
\end{array}\right]=\left[\begin{array}{l}
4 \alpha-\alpha / 24+1 / 4 \\
1 / 4 \\
1 / 4 \\
\beta+1 / 8
\end{array}\right]
$$

4. We multiply the differential equation by a test function $v \in H_{0}^{1}(I), I=(0,1)$ and integrate over I. Using partial integration and the boundary conditions we get the following variational problem: Find $u \in H_{0}^{1}(I)$ such that

$$
\begin{equation*}
\int_{I}\left(u^{\prime} v^{\prime}+p x u^{\prime} v+\left(1+\frac{p}{2}\right) u v\right)=\int_{I} f v, \quad \forall v \in H_{0}^{1}(I) \tag{4}
\end{equation*}
$$

A Finite Element Method with $c G(1)$ reads as follows: Find $U \in V_{h}^{0}$ such that

$$
\begin{equation*}
\int_{I}\left(U^{\prime} v^{\prime}+p x U^{\prime} v+\left(1+\frac{p}{2}\right) U v\right)=\int_{I} f v, \quad \forall v \in V_{h}^{0} \subset H_{0}^{1}(I) \tag{5}
\end{equation*}
$$

where
$V_{h}^{0}=\{v: v$ is piecewise linear and continuous in a partition of $I, v(0)=v(1)=0\}$.
Now let $e=u-U$, then (1)-(2) gives that

$$
\begin{equation*}
\int_{I}\left(e^{\prime} v^{\prime}+p x e^{\prime} v+\left(1+\frac{p}{2}\right) e v\right)=0, \quad \forall v \in V_{h}^{0} \tag{6}
\end{equation*}
$$

A posteriori error estimate: We note that using $e(0)=e(1)=0$, we get

$$
\begin{equation*}
\int_{I} p x e^{\prime} e=\frac{p}{2} \int_{I} x \frac{d}{d x}\left(e^{2}\right)=\left.\frac{p}{2}\left(x e^{2}\right)\right|_{0} ^{1}-\frac{p}{2} \int_{I} e^{2}=-\frac{p}{2} \int_{I} e^{2} \tag{7}
\end{equation*}
$$

so that

$$
\begin{align*}
\|e\|_{H^{1}}^{2} & =\int_{I}\left(e^{\prime} e^{\prime}+e e\right)=\int_{I}\left(e^{\prime} e^{\prime}+p x e^{\prime} e+\left(1+\frac{p}{2}\right) e e\right) \\
& =\int_{I}\left((u-U)^{\prime} e^{\prime}+p x(u-U)^{\prime} e+\left(1+\frac{p}{2}\right)(u-U) e\right)=\{v=e \operatorname{in}(1)\} \\
& =\int_{I} f e-\int_{I}\left(U^{\prime} e^{\prime}+p x U^{\prime} e+\left(1+\frac{p}{2}\right) U e\right)=\left\{v=\pi_{h} e \operatorname{in}(2)\right\} \tag{8}\\
& =\int_{I} f\left(e-\pi_{h} e\right)-\int_{I}\left(U^{\prime}\left(e-\pi_{h} e\right)^{\prime}+p x U^{\prime}\left(e-\pi_{h} e\right)+\left(1+\frac{p}{2}\right) U\left(e-\pi_{h} e\right)\right) \\
& =\{\text { P.I. on each subinterval }\}=\int_{I} \mathcal{R}(U)\left(e-\pi_{h} e\right),
\end{align*}
$$

where $\mathcal{R}(U):=f+U^{\prime \prime}-p x U^{\prime}-\left(1+\frac{p}{2}\right) U=f-p x U^{\prime}-\left(1+\frac{p}{2}\right) U$, (for approximation with piecewise linears, $U \equiv 0$, on each subinterval). Thus (5) implies that

$$
\begin{aligned}
\|e\|_{H^{1}}^{2} & \leq\|h \mathcal{R}(U)\|\left\|h^{-1}\left(e-\pi_{h} e\right)\right\| \\
& \leq C_{i}\|h \mathcal{R}(U)\|\left\|e^{\prime}\right\| \leq C_{i}\|h \mathcal{R}(U)\|\|e\|_{H^{1}}
\end{aligned}
$$

where C_{i} is an interpolation constant, and hence we have with $\|\cdot\|=\|\cdot\|_{L_{2}(I)}$ that

$$
\|e\|_{H^{1}} \leq C_{i}\|h \mathcal{R}(U)\|
$$

A priori error estimate: We use (4) and write

$$
\begin{aligned}
\|e\|_{H^{1}}^{2} & =\int_{I}\left(e^{\prime} e^{\prime}+e e\right)=\int_{I}\left(e^{\prime} e^{\prime}+p x e^{\prime} e+\left(1+\frac{p}{2}\right) e e\right) \\
& =\int_{I}\left(e^{\prime}(u-U)^{\prime}+p x e^{\prime}(u-U)+\left(1+\frac{p}{2}\right) e(u-U)\right)=\left\{v=U-\pi_{h} u \operatorname{in}(3)\right\} \\
& =\int_{I}\left(e^{\prime}\left(u-\pi_{h} u\right)^{\prime}+p x e^{\prime}\left(u-\pi_{h} u\right)+\left(1+\frac{p}{2}\right) e\left(u-\pi_{h} u\right)\right) \\
& \leq\left\|\left(u-\pi_{h} u\right)^{\prime}\right\|\left\|e^{\prime}\right\|+p\left\|u-\pi_{h} u\right\|\left\|e^{\prime}\right\|+\left(1+\frac{p}{2}\right)\left\|u-\pi_{h} u\right\|\|e\| \\
& \leq\left\{\left\|\left(u-\pi_{h} u\right)^{\prime}\right\|+(1+p)\left\|u-\pi_{h} u\right\|\right\}\|e\|_{H^{1}} \\
& \leq C_{i}\left\{\left\|h u^{\prime \prime}\right\|+(1+p)\left\|h^{2} u^{\prime \prime}\right\|\right\}\|e\|_{H^{1}}
\end{aligned}
$$

this gives that

$$
\|e\|_{H^{1}} \leq C_{i}\left\{\left\|h u^{\prime \prime}\right\|+(1+p)\left\|h^{2} u^{\prime \prime}\right\|\right\}
$$

which is the a priori error estimate.
5. See Lecture Notes or text book chapter 16.
6. Consider

$$
\begin{equation*}
-\operatorname{div}(\varepsilon \nabla u+\beta u)=f, \text { in } \Omega, \quad u=0 \text { on } \Gamma=\partial \Omega \tag{9}
\end{equation*}
$$

a) Multiply the equation (6) by $v \in H_{0}^{1}(\Omega)$ and integrate over Ω to obtain the Green's formula

$$
-\int_{\Omega} d i v(\varepsilon \nabla u+\beta u) v d x=\int_{\Omega}(\varepsilon \nabla u+\beta u) \cdot \nabla v d x=\int_{\Omega} f v d x
$$

Variational formulation for (6) is as follows: Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=L(v), \quad \forall v \in H_{0}^{1}(\Omega) \tag{10}
\end{equation*}
$$

where

$$
a(u, v)=\int_{\Omega}(\varepsilon \nabla u+\beta u) \cdot \nabla v d x
$$

and

$$
L(v)=\int_{\Omega} f v d x
$$

According to the Lax-Milgram theorem, for a unique solution for (7) we need to verify that the following relations are valid:
i)

$$
|a(v, w)| \leq \gamma\|u\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)}, \quad \forall v, w \in H_{0}^{1}(\Omega)
$$

ii)

$$
a(v, v) \geq \alpha\|v\|_{H^{1}(\Omega)}^{2}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

iii)

$$
|L(v)| \leq \Lambda\|v\|_{H^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

for some $\gamma, \alpha, \Lambda>0$.
Now since

$$
|L(v)|=\left|\int_{\Omega} f v d x\right| \leq\|f\|_{L_{2}(\Omega)}\|v\|_{L_{2}(\Omega)} \leq\|f\|_{L_{2}(\Omega)}\|v\|_{H^{1}(\Omega)}
$$

thus iii) follows with $\Lambda=\|f\|_{L_{2}(\Omega)}$.
Further we have that

$$
\begin{aligned}
|a(v, w)| & \leq \int_{\Omega}|\varepsilon \nabla v+\beta v||\nabla w| d x \leq \int_{\Omega}(\varepsilon|\nabla v|+|\beta||v|)|\nabla w| d x \\
& \leq\left(\int_{\Omega}(\varepsilon|\nabla v|+|\beta||v|)^{2} d x\right)^{1 / 2}\left(\int_{\Omega}|\nabla w|^{2} d x\right)^{1 / 2} \\
& \leq \sqrt{2} \max \left(\varepsilon,\|\beta\|_{\infty}\right)\left(\int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x\right)^{1 / 2}\|w\|_{H^{1}(\Omega)} \\
& =\gamma\|v\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)}
\end{aligned}
$$

which, with $\gamma=\sqrt{2} \max \left(\varepsilon,\|\beta\|_{\infty}\right)$, gives i).
Finally, if $\operatorname{div} \beta \leq 0$, then

$$
\begin{aligned}
a(v, v) & =\int_{\Omega}\left(\varepsilon|\nabla v|^{2}+(\beta \cdot \nabla v) v\right) d x=\int_{\Omega}\left(\varepsilon|\nabla v|^{2}+\left(\beta_{1} \frac{\partial v}{\partial x_{1}}+\beta_{2} \frac{\partial v}{\partial x_{2}}\right) v\right) d x \\
& =\int_{\Omega}\left(\varepsilon|\nabla v|^{2}+\frac{1}{2}\left(\beta_{1} \frac{\partial}{\partial x_{1}}(v)^{2}+\beta_{2} \frac{\partial}{\partial x_{2}}(v)^{2}\right)\right) d x=\text { Green's formula } \\
& =\int_{\Omega}\left(\varepsilon|\nabla v|^{2}-\frac{1}{2}(\operatorname{div} \beta) v^{2}\right) d x \geq \int_{\Omega} \varepsilon|\nabla v|^{2} d x
\end{aligned}
$$

Now by the Poincare's inequality

$$
\int_{\Omega}|\nabla v|^{2} d x \geq C \int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x=C| | v \|_{H^{1}(\Omega)}^{2}
$$

for some constant $C=C(\operatorname{diam}(\Omega))$, we have

$$
a(v, v) \geq \alpha\|v\|_{H^{1}(\Omega)}^{2}, \quad \text { with } \alpha=C \varepsilon
$$

thus ii) is valid under the condition that $\operatorname{div} \beta \leq 0$.
From ii), (7) (with $v=u$) and iii) we get that

$$
\alpha\|u\|_{H^{1}(\Omega)}^{2} \leq a(u, u)=L(u) \leq \Lambda\|u\|_{H^{1}(\Omega)}
$$

which gives the stability estimate

$$
\|u\|_{H^{1}(\Omega)} \leq \frac{\Lambda}{\alpha}
$$

with $\Lambda=\|f\|_{L_{2}(\Omega)}$ and $\alpha=C \varepsilon$ defined above.
MA

