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1. Let f ∈ C2(a, b) and prove the following interpolation error estimate in the L∞ norm,

‖f − π1f‖L∞(a,b) ≤ (b − a)2‖f ′′‖L∞(a,b).

2. Consider the initial value problem: u̇(t) + au(t) = 0, t > 0, u(0) = 1.

a) Let a = 40, and the time step k = 0.1. Draw the graph of Un := U(nk), k = 1, 2, . . . ,
approximating u using (i) explicit Euler, (ii) implicit Euler, and (iii) Cranck-Nicholson methods.

b) Consider the case a = i, (i2 = −1), having the complex solution u(t) = e−it with |u(t)| = 1 for
all t. Show that this property is preserved in Cranck-Nicholson approximation, i.e. |Un| = 1, but
not in any of the Euler approximations.

3. Let α and β be positive constants. Give the piecewise linear finite element approximation
procedure and derive the corresponding stiffness matrix, mass matrix and load vector using the
uniform mesh with size h = 1/4 for the problem

−u′′(x) + u = 1, 0 < x < 1; u(0) = α, u′(1) = β.

4. Let p be a positive constant. Prove an a priori and an a posteriori error estimate (in the
H1-norm: ||e||2H1 = ||e′||2 + ||e||2) for a finite element method for problem

−u′′ + pxu′ + (1 +
p

2
)u = f, in (0, 1), u(0) = u(1) = 0.

5. Consider the initial boundary value problem for the heat equation







u̇ − ∆u = 0, x ∈ Ω ⊂ R
2, 0 < t ≤ T,

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,
u(x, 0) = u0(x), x ∈ Ω.

Prove the following stability estimates

i) ‖u‖2(t) + 2

∫ t

0

‖∇u‖2(s) ds = ‖u0‖2,

ii)

∫ t

0

s‖∆u‖2(s) ds ≤ 1

4
‖u0‖2, and iii) ‖∇u‖(t) ≤ 1√

2t
‖u0‖.

6. Consider the convection-diffusion problem

−div(ε∇u + βu) = f, in Ω ⊂ R
2, u = 0, on ∂Ω,

where Ω is a bounded convex polygonal domain, ε > 0 is constant, β = (β1(x), β2(x)) and f = f(x).
Determine the conditions in the Lax-Milgram theorem that would guarantee existence of a unique
solution for this problem. Prove a stability estimate for u i terms of ||f ||L2(Ω), ε and diam(Ω),
and under the conditions that you derived.
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Lösningar/Solutions.

1. See Lecture Notes or the text book, Chapter 5.

2. a) With a = 40 and k = 0.1 we get the explicit Euler:
{

Un − Un−1 + 40 × (0.1)Un−1 = 0,
U0 = 1.

=⇒
{

Un = −3Un−1, n = 1, 2, 3, . . . ,
U0 = 1.

Implicit Euler:
{

Un = 1
1+40×(0.1)Un−1 = 1

5Un−1, n = 1, 2, 3, . . . ,

U0 = 1.

Cranck-Nicolson:
{

Un =
1− 1

2
×40×(0.1)

1+ 1
2
×40×(0.1)

Un−1 = − 1
3Un−1, n = 1, 2, 3, . . . ,

U0 = 1.
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b) With a = i we get

Explicit Euler

|Un| = |1 − (0.1) × i||Un−1| =
√

1 + 0.01|Un−1| =⇒ |Un| ≥ |Un−1|.

Implicit Euler

|Un| =
∣

∣

∣

1

1 + (0.1) × i

∣

∣

∣
|Un−1| =

1√
1 + 0.01

|Un−1| ≤ |Un−1|.

Crank-Nicolson

|Un| =
∣

∣

∣

1 − 1
2 (0.1) × i

1 + 1
2 (0.1) × i

∣

∣

∣
|Un−1| = |Un−1|.
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3. Multiply the pde by a test function v with v(0) = 0, integrate over x ∈ (0, 1) and use partial
integration to get

− [u′v]10 +

∫ 1

0

u′v′ dx +

∫ 1

0

uv dx =

∫ 1

0

v dx ⇐⇒

− u′(1)v(1) + u′(0)v(0) +

∫ 1

0

u′v′ dx +

∫ 1

0

uv dx =

∫ 1

0

v dx ⇐⇒

− βv(1) +

∫ 1

0

u′v′ dx +

∫ 1

0

uv dx =

∫ 1

0

v dx.

(1)

The continuous variational formulation is now formulated as follows: Find

(V F ) u ∈ V := {w :

∫ 1

0

(

w(x)2 + w′(x)2
)

dx < ∞, w(0) = α},

such that
∫ 1

0

u′v′ dx +

∫ 1

0

uv dx =

∫ 1

0

v dx + βv(1), ∀v ∈ V 0,

where

V 0 := {v :

∫ 1

0

(

v(x)2 + v′(x)2
)

dx < ∞, v(0) = 0}.

For the discrete version we let Th be a uniform partition: 0 = x0 < x1 < . . . < xN+1 of [0, 1] into
the subintervals In = [xn−1, xn], n = 1, . . .N + 1. Here, we have N interior nodes: x1, . . . xN , two
boundary points: x0 = 0 and xN+1 = 1 (see Fig. below for N = 3, h = 1/4, and hence N + 1 = 4
intervals).

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4

x0 = 0 x1 = 1/4 x2 = 1/2 x3 = 3/4 x4 = 1

We shall keep the general framework and let N = 3, h = 1/4 at the very end. The finite element
method (discrete variational formulation) is now formulated as follows: Find

(FEM) uh ∈ Vh := {wh : wh is piecewise linear and continuous on Th, wh(0) = α},
such that

(2)

∫ 1

0

u′

hv′h dx +

∫ 1

0

uhvh dx =

∫ 1

0

vh dx + βvh(1), ∀v ∈ V 0
h ,

where

V 0
h := {vh : vh is piecewise linear and continuous on Th, vh(0) = 0}.

Using the basis functions ϕj , j = 0, . . .N +1, where ϕ1, . . . ϕN are the usual hat-functions whereas
ϕ0 and ϕN+1 are semi-hat-functions viz;

(3) ϕj(x) =







0, x /∈ [xj−1, xj ]
x−xj−1

h xj−1 ≤ x ≤ xj
xj+1−x

h xj ≤ x ≤ xj+1

, j = 1, . . .N.

and

ϕ0(x) =

{

x1−x
h 0 ≤ x ≤ x1

0, x1 ≤ x ≤ 1
, ϕN+1(x) =

{

x−xN

h xN ≤ x ≤ xN+1

0, 0 ≤ x ≤ xN .

In this way we may write

Vh = αϕ0 ⊕ [ϕ1, . . . , ϕN+1], V 0
h = [ϕ1, . . . , ϕN+1].
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Thus every uh ∈ Vh can be written as uh = αϕ0 + vh where vh ∈ V 0
h , i.e.,

uh = αϕ0 + ξ1ϕ1 + . . . ξN+1ϕN+1 = αϕ0 +

M+1
∑

j=1

ξjϕj ≡ αϕ0 + ũh,

where ũh ∈ V 0
h . Hence the problem (2) can equivalently be formulated as follows

∫ 1

0

(

αϕ′

0 +

N+1
∑

i=1

ξjϕ
′

j

)

ϕ′

i dx +

∫ 1

0

(

αϕ0 +

N+1
∑

i=1

ξjϕj

)

ϕi dx =

∫ 1

0

ϕi dx + βϕi(1), i = 1, . . .N + 1,

or, more specifically, as: For i = 1, . . . N +1, find ξj from the following linear system of equations:

N+1
∑

j=1

(

∫ 1

0

ϕ′

iϕ
′

j dx
)

ξj+

N+1
∑

j=1

(

∫ 1

0

ϕiϕj dx
)

ξj+ = −α

∫ 1

0

ϕ′

0ϕ
′

i dx−α

∫ 1

0

ϕ0ϕi dx+

∫ 1

0

ϕi dx+βϕi(1),

or equivalently Aξ = b where A = S +M with S = (sij) being the stiffness matrix and M = (mij)
the mass matrix. Now, since we have a uniform mesh with N = 3; the standard values for entries
of these matrices are as follows

sii = 2/h, ai,i+1 = ai+1,i = −1/h, i = 1, . . .N, and aN+1,N+1 = 1/h,

and
mii = 2h/3, ai,i+1 = ai+1,i = h/6, i = 1, . . . N, and aN+1,N+1 = h/3.

Now we return to our specific basis functions as in the Figure above (N + 1 = 4, h = 1/4), note
that ϕ4 is a half-hat function. Then

A = 4









2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1









+
1

24









4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2









,

and the unknown ξ := [ξ1ξ2, ξ3, ξ4]
t is determined by solving Aξ = b, with A as above and the

load vector b given by

b =











−α
∫ 1

0 ϕ′

0ϕ
′

1 dx − α
∫ 1

0 ϕ0ϕ1 dx +
∫ 1

0 ϕ1 dx
∫ 1

0
ϕ2 dx

∫ 1

0
ϕ3 dx

∫ 1

0 ϕ4 dx + βϕ4(1)











=









4α − α/24 + 1/4
1/4
1/4
β + 1/8









.

4. We multiply the differential equation by a test function v ∈ H1
0 (I), I = (0, 1) and integrate

over I. Using partial integration and the boundary conditions we get the following variational

problem: Find u ∈ H1
0 (I) such that

(4)

∫

I

(

u′v′ + pxu′v + (1 +
p

2
)uv

)

=

∫

I

fv, ∀v ∈ H1
0 (I).

A Finite Element Method with cG(1) reads as follows: Find U ∈ V 0
h such that

(5)

∫

I

(

U ′v′ + pxU ′v + (1 +
p

2
)Uv

)

=

∫

I

fv, ∀v ∈ V 0
h ⊂ H1

0 (I),

where

V 0
h = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u − U , then (1)-(2) gives that

(6)

∫

I

(

e′v′ + pxe′v + (1 +
p

2
)ev

)

= 0, ∀v ∈ V 0
h .

A posteriori error estimate: We note that using e(0) = e(1) = 0, we get

(7)

∫

I

pxe′e =
p

2

∫

I

x
d

dx
(e2) =

p

2
(xe2)|10 −

p

2

∫

I

e2 = −p

2

∫

I

e2,
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so that

‖e‖2
H1 =

∫

I

(e′e′ + ee) =

∫

I

(

e′e′ + pxe′e + (1 +
p

2
)ee

)

=

∫

I

(

(u − U)′e′ + px(u − U)′e + (1 +
p

2
)(u − U)e

)

= {v = e in(1)}

=

∫

I

fe−
∫

I

(

U ′e′ + pxU ′e + (1 +
p

2
)Ue

)

= {v = πhe in(2)}

=

∫

I

f(e − πhe) −
∫

I

(

U ′(e − πhe)′ + pxU ′(e − πhe) + (1 +
p

2
)U(e − πhe)

)

= {P.I. on each subinterval} =

∫

I

R(U)(e − πhe),

(8)

where R(U) := f +U ′′−pxU ′−(1+ p
2 )U = f−pxU ′−(1+ p

2 )U , (for approximation with piecewise
linears, U ≡ 0, on each subinterval). Thus (5) implies that

‖e‖2
H1 ≤ ‖hR(U)‖‖h−1(e − πhe)‖

≤ Ci‖hR(U)‖‖e′‖ ≤ Ci‖hR(U)‖‖e‖H1 ,

where Ci is an interpolation constant, and hence we have with ‖ · ‖ = ‖ · ‖L2(I) that

‖e‖H1 ≤ Ci‖hR(U)‖.

A priori error estimate: We use (4) and write

‖e‖2
H1 =

∫

I

(e′e′ + ee) =

∫

I

(e′e′ + pxe′e + (1 +
p

2
)ee)

=

∫

I

(

e′(u − U)′ + pxe′(u − U) + (1 +
p

2
)e(u − U)

)

= {v = U − πhu in(3)}

=

∫

I

(

e′(u − πhu)′ + pxe′(u − πhu) + (1 +
p

2
)e(u − πhu)

)

≤ ‖(u − πhu)′‖‖e′‖ + p‖u − πhu‖‖e′‖ + (1 +
p

2
)‖u − πhu‖‖e‖

≤ {‖(u − πhu)′‖ + (1 + p)‖u − πhu‖}‖e‖H1

≤ Ci{‖hu′′‖ + (1 + p)‖h2u′′‖}‖e‖H1,

this gives that

‖e‖H1 ≤ Ci{‖hu′′‖ + (1 + p)‖h2u′′‖},
which is the a priori error estimate.

5. See Lecture Notes or text book chapter 16.

6. Consider

(9) −div(ε∇u + βu) = f, in Ω, u = 0 on Γ = ∂Ω.

a) Multiply the equation (6) by v ∈ H1
0 (Ω) and integrate over Ω to obtain the Green’s formula

−
∫

Ω

div(ε∇u + βu)v dx =

∫

Ω

(ε∇u + βu) · ∇v dx =

∫

Ω

fv dx.

Variational formulation for (6) is as follows: Find u ∈ H1
0 (Ω) such that

(10) a(u, v) = L(v), ∀v ∈ H1
0 (Ω),

where

a(u, v) =

∫

Ω

(ε∇u + βu) · ∇v dx,

and

L(v) =

∫

Ω

fv dx.
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According to the Lax-Milgram theorem, for a unique solution for (7) we need to verify that the
following relations are valid:

i)
|a(v, w)| ≤ γ||u||H1(Ω)||w||H1(Ω), ∀v, w ∈ H1

0 (Ω),

ii)
a(v, v) ≥ α||v||2H1(Ω), ∀v ∈ H1

0 (Ω),

iii)
|L(v)| ≤ Λ||v||H1(Ω), ∀v ∈ H1

0 (Ω),

for some γ, α, Λ > 0.

Now since

|L(v)| = |
∫

Ω

fv dx| ≤ ||f ||L2(Ω)||v||L2(Ω) ≤ ||f ||L2(Ω)||v||H1(Ω),

thus iii) follows with Λ = ||f ||L2(Ω).

Further we have that

|a(v, w)| ≤
∫

Ω

|ε∇v + βv||∇w| dx ≤
∫

Ω

(ε|∇v| + |β||v|)|∇w| dx

≤
(

∫

Ω

(ε|∇v| + |β||v|)2 dx
)1/2(

∫

Ω

|∇w|2 dx
)1/2

≤
√

2max(ε, ||β||∞)
(

∫

Ω

(|∇v|2 + v2) dx
)1/2

||w||H1(Ω)

= γ||v||H1(Ω)||w||H1(Ω),

which, with γ =
√

2 max(ε, ||β||∞), gives i).

Finally, if divβ ≤ 0, then

a(v, v) =

∫

Ω

(

ε|∇v|2 + (β · ∇v)v
)

dx =

∫

Ω

(

ε|∇v|2 + (β1
∂v

∂x1
+ β2

∂v

∂x2
)v

)

dx

=

∫

Ω

(

ε|∇v|2 +
1

2
(β1

∂

∂x1
(v)2 + β2

∂

∂x2
(v)2)

)

dx = Green’s formula

=

∫

Ω

(

ε|∇v|2 − 1

2
(divβ)v2

)

dx ≥
∫

Ω

ε|∇v|2 dx.

Now by the Poincare’s inequality
∫

Ω

|∇v|2 dx ≥ C

∫

Ω

(|∇v|2 + v2) dx = C||v||2H1(Ω),

for some constant C = C(diam(Ω)), we have

a(v, v) ≥ α||v||2H1(Ω), with α = Cε,

thus ii) is valid under the condition that divβ ≤ 0.

From ii), (7) (with v = u) and iii) we get that

α||u||2H1(Ω) ≤ a(u, u) = L(u) ≤ Λ||u||H1(Ω),

which gives the stability estimate

||u||H1(Ω) ≤
Λ

α
,

with Λ = ||f ||L2(Ω) and α = Cε defined above.
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