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Question 1

(the simplex method)

Consider the following linear program:

minimize z = x1 + x2 +3x3,

subject to − x2 +3x3 ≤−1,

−2x1 + x2 − x3 ≤ 1,

x1, x2, x3 ≥ 0.

a) Solve this problem by using phase I and phase II of the simplex method.(2p)

[Aid: Utilize the identity

(

a b

c d

)

−1

=
1

ad − bc

(

d −b

−c a

)

for producing basis inverses.]

b) Is the solution obtained unique? Motivate!(1p)

Question 2

(modelling)

Consider the following portfolio selection problem. An investor must choose a
portfolio x = (x1, x2, . . . , xn)T, where xj is the proportion of the assets allocated
to the j:th security. The return on the portfolio has the mean value c̄Tx and the
variance xTV x, where c̄ is the vector denoting mean returns and V is the matrix
of covariances of the returns. The investor would (essentially) like to maximize
his/her expected return, while at the same time minimize the variance and hence
the risk.

A portfolio is called efficient (or (weakly) Pareto optimal) if there is no other
portfolio having both a larger expected return and a smaller variance.

a) Formulate an optimization problem whose optimal solution corresponds to(2p)
an efficient portfolio. (Different models are possible.) Motivate why your
model leads to an efficient portfolio.

b) Suggest a systematic way of generating multiple efficient solutions.(1p)
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Question 3

(interior penalty method)

Consider the following problem:

minimize f(x) := 1

2
(x1 + 1)2 + 1

2
(x2 + 1)2,

subject to x1 ≥ 0,

x2 ≥ 0.

a) Apply the logarithmic interior penalty method for this problem, and show(1p)
that it converges to a limit point.

b) Is the limit point a KKT-point?(1p)

c) Under what conditions for a general nonlinear program can we be certain(1p)
that the interior penalty method converges to a KKT-point?

Question 4

(necessary local and sufficient global optimality conditions)

Consider an optimization problem of the following general form:

minimize f(x), (1a)

subject to x ∈ S, (1b)

where S ⊆ R
n is nonempty, closed and convex, and f : R

n → R is in C1 on S.

a) Establish the following result on the local optimality of a vector x∗ ∈ S in(1p)
this problem.

Proposition 1 (necessary optimality conditions, C1 case) If x∗ ∈ S is a
local minimum of f over S then

∇f(x∗)T(x − x∗) ≥ 0, x ∈ S (2)

holds.
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b) Establish the following result on the global optimality of a vector x∗ ∈ S(2p)
in this problem.

Theorem 2 (necessary and sufficient global optimality conditions, C 1 case)
Suppose that f : R

n → R is convex on S. Then,

x∗ is a global minimum of f over S ⇐⇒ (2) holds.

Question 5

(Lagrangian duality)

Consider the following quadratic programming problem:

minimize f(x) := x2

1
+ 2x2

2
− 4x1 − 8x2,

subject to x1 + x2 ≤ 2,

x1, x2 ≥ 0.

(1)

We will attack this problem by using Lagrangian duality.

a) Consider Lagrangian relaxing the complicating constraint (1). Write down(1p)
explicitly the resulting Lagrangian subproblem of minimizing the Lagrange
function over the remaining constraints. Construct an explicit formula for
the Lagrangian dual function. Establish that it is a concave function.

b) Solve the Lagrangian dual problem. State in particular the optimal solution,(1p)
and the optimal value of the dual objective function.

c) Utilize the result in b) to generate an optimal solution to the original,(1p)
primal, problem. Verify that strong duality holds. Is the primal optimal
solution unique?
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Question 6(3p)

(convexity)

Consider the problem to

minimize cTx,

subject to ‖Ax‖2

2
≤ 1,

where c ∈ R
n, A ∈ R

n×n, A is invertible and c 6= 0. Show that the problem is
convex and derive an explicit expression for the optimal solution.

Question 7

(linear programming duality and matrix games)

Let c ∈ R
n, b ∈ R

m, and A ∈ R
m×n, and consider the canonical LP problem

minimize z = cTx,

subject to Ax ≥ b,

x ≥ 0n,

and its associated dual LP problem. In the following, we denote the respective
problem by (P) and (D).

a) If m = n and AT = −A, we then say that the matrix A is skew-symmetric.(1p)

Suppose that in the problem (P), the matrix A is skew-symmetric and that
b = −c also holds. Establish that if an optimal solution to (P) exists, then
z∗ = 0 holds.

b) The problem studied in a) is known as a self-dual LP problem.(2p)

Consider again the canonical primal–dual pair (P), (D) of LP problems.
Construct a self-dual LP problem in n + m variables and n + m linear
constraints which is equivalent to (P), (D). By “equivalent” we refer to
the property that any primal–dual optimal solutions x∗ and y∗ to the pair
(P), (D) are obtained immediately as an optimal solution to the problem
constructed. (In other words, we can solve any primal–dual pair of canonical
LP problems as a self-dual LP problem in a higher dimension.)

Good luck!
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Question 1

(the simplex method)

a) To transform the problem to standard form, the sign on the first constraint(2p)
must be changed. Then subtract a non-negative slack variable s1 in the
first constraint and add one non-negative slack variable s2 in the second. A
BFS cannot be found directly, hence begin with phase 1 with an artificial
variable a ≥ 0 added in the first constraint - the slack varible s2 can be used
as the other basic variable. The objective is to minimize w = a. Start with
the BFS given by (a, s2). In the first iteration of the simplex algorithm, x2

is the only variable with a negative reduced cost (−1), and is therefore the
only eligable incoming variable. The minimum ratio test shows that either
a or s2 can be removed from the basis. By choosing a as the outgoing
variable, we can proceed to phase 2.

The reduced costs in the first iteration of the phase 2 problem are

c̃T

(x1,x3,s1) = (1, 6, 1) ≥ 0,

and thus the optimality condition is fulfilled for the current basis. We have
x∗

B = (1, 0)T, or in the original variables, x∗ = (x1, x2, x3)
∗ = (0, 1, 0)T,

with the optimal value z∗ = 1.

b) At the obtained optimal solution all reduced cost are strictly greater than(1p)
zero, hence the obtained optimal solution must be unique.
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Question 2

(modelling)

a) One possibility is the following formulation:(2p)

minimize f(x) := µ(−c̄Tx) + (1 − µ)xTV x,

subject to
n
∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . , n,

where µ ∈ [0, 1] is a parameter balancing the two objectives. To show that
the obtained solution x∗ is efficient assume that it is not. Then there is
another solution y∗ such that c̄Ty∗ < c̄Tx

�

and y∗TV y∗ < x∗TV x∗. But
then obviously f(y∗) < f(x∗) which is a contradiction to x∗ being optimal.

Another possible formulation is:

minimize f(x) := −c̄Tx,

subject to xTV x ≤ b,
n
∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . , n,

where b is a parameter setting the maximum value of the variance objective.
Also here, the efficiency can be shown through contradiction.

b) By varying the parameter values µ and b, respectively, different efficient(1p)
solutions can be found.

Question 3(3p)

(interior penalty method)

The logarithmic penalty function is

P (x; ν) = 1
2
(x1 + 1)2 + 1

2
(x2 + 1)2 − ν log x1 − ν log x2.
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It is convex, and the first order optimality conditions is

∇P (x; ν) =

(

x1 + 1 − ν

x1

x2 + 1 − ν

x2

)

=

(

0
0

)

,

which gives a unique optimal solution

x∗(ν) =
−1 +

√
1 + 4ν

2

(

1
1

)

.

due to the requirement x1 > 0, x2 > 0. As ν → ∞, we get x∗ = (0, 0)T.
It converges to a KKT-point. According to Theorem 13.6, we can guarantee
convergence to a KKT-point if LICQ holds.

Question 4

(necessary local and sufficient global optimality conditions)

a) See Proposition 4.23.(1p)

b) See Theorem 4.24.(2p)

Question 5

(Lagrangian duality)

a) From the stationarity conditions for the Lagrangian we get that(1p)

x1(µ) =







(4 − µ)/2, 0 ≤ µ ≤ 4,

0, 4 ≤ µ,

respectively,

x2(µ) =







(8 − µ)/4, 0 ≤ µ ≤ 8,

0, 8 ≤ µ.

We then get the following expression for the Lagrangian dual function, to
be maximized over µ ≥ 0:

q(µ) =















−(3/8)µ2 + 2µ − 12, 0 ≤ µ ≤ 4,

−(1/8)µ2 − 8, 4 ≤ µ ≤ 8,

−2µ, µ ≥ 8.
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The corresponding derivatives then are:

q′(µ) =















−(3/4)µ + 2, 0 ≤ µ ≤ 4,

−(1/4)µ, 4 ≤ µ ≤ 8,

−2, µ ≥ 8.

It is clear that q is concave and differentiable for every µ ≥ 0. It is in fact
strictly concave.

b) Setting q′(µ) = 0 as a first trial, we obtain that q′(µ) = 0 for µ = 8/3. Since(1p)
the dual problem is convex this is the optimal dual solution: µ∗ = 8/3. The
corresponding objective value is q(µ∗) = −91

3
.

c) The Lagrangian optimal solution in x for µ = µ∗ is, from a), x = (2/3, 4/3)T.(1p)
This is feasible in the primal problem, and f(x) = q(µ∗) so it is also optimal,
by the weak duality theorem. According to duality theory for convex prob-
lems over polyhedral sets, all primal optimal solutions are generated from
Lagrangian optimal solutions given an optimal dual vector. Since x(µ∗)
here is the unique vector x∗ = (2/3, 4/3)T this must also be the unique
optimal solution to the primal problem.

Question 6(3p)

(convexity)

The objective function is convex and the constraint

‖Ax‖2
2 = xTATAx ≤ 1

is convex since it is quadratic and the Hessian ATA is positive definite, since
A is invertible. (It is positive semidefinite even if it is not invertible, and hence
convex.) This means that the problem is convex. The optimal solution can be
computed from the KKT-conditions since e.g. Slater CQ holds.

c + 2λATAx = 0

‖Ax‖2
2 ≤ 1

λ
(

‖Ax‖2
2 − 1

)

= 0

Since the objective function is linear with nonzero gradient, the optimal solution
must be at the boundary of the constraint. The first condition gives

x = − 1

2λ

(

ATA
)

−1
c,
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and hence

1 = xTATAx ⇒ λ =

√

1
4
cT
(

ATA
)

−1
c = 1

2
‖A−Tc‖2.

The optimal solution is

x∗ = − 1

‖A−Tc‖2

(

ATA
)

−1
c.

Question 7

(linear programming duality and matrix games)

a) Under the given conditions we have that(1p)

z∗ = minimum { cTx | Ax ≥ b, x ≥ 0n }
= maximum { bTy | ATy ≤ c, y ≥ 0m }
= maximum { (−c)Ty | −Ay ≤ −b, y ≥ 0n }
= maximum { (−c)Ty | Ay ≥ b, y ≥ 0n }
= −z∗,

which implies that z∗ = 0.

b) The self-dual skew symmetric LP problem sought is(2p)

minimize cTx − bTy,

subject to

(

0m×n −AT

A 0n×m

)(

x

y

)

≥
(

−c

b

)

,

(x, y) ≥ 0n × 0m.


