
Chalmers/Gothenburg University
Mathematical Sciences

EXAM

TMA947/MAN280
OPTIMIZATION, BASIC COURSE

Date: 08–03–25

Time: House V, morning

Aids: Text memory-less calculator, English–Swedish dictionary

Number of questions: 7; passed on one question requires 2 points of 3.

Questions are not numbered by difficulty.

To pass requires 10 points and three passed questions.

Examiner: Michael Patriksson

Teacher on duty: Adam Wojciechowski (0762-721860)

Result announced: 08–04–02

Short answers are also given at the end of

the exam on the notice board for optimization

in the MV building.

Exam instructions

When you answer the questions

Use generally valid theory and methods.

State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen.

Do not answer more than one question per page.

At the end of the exam

Sort your solutions by the order of the questions.

Mark on the cover the questions you have answered.

Count the number of sheets you hand in and fill in the number on the cover.



EXAM
TMA947/MAN280 — OPTIMIZATION, BASIC COURSE 1

Question 1

(the simplex method)

Consider the following linear program:

minimize z =− x1 − x2,

subject to −x1 − 2x2 − x3 = 2,

3x1 + x2 ≤−1,

x2, x3 ≥ 0,

x1 ∈ R (free).

a) Solve this problem by using phase I and phase II of the simplex method.(2p)

[Aid: Utilize the identity

(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

for producing basis inverses.]

b) Motivate using the solution from a) and the relationships between primal(1p)
and dual problems why there cannot exist a vector u = (u1, u2, u3)

T fulfill-
ing the following system of constraints:





−1 3 0
−2 1 1
2 −1 0



u =





0
0
1



 , u1 ≥ 0, u2 ≤ 0, u3 ≥ 0.

Question 2

(modelling)

Consider the mixed-integer problem (MIP) of minimizing the linear function
f(x, y) over the set X × Y , where X = {x ∈ {0, 1}n | Ax ≤ b } and Y =
{y ∈ R

m | yi ≥ 0, i = 1, . . . , m }.

a) Formulate the mixed-integer problem as one non-linear program using only(1p)
continuous variables and continuous constraints.

b) Assume that n = 1. Explain how to solve the mixed-integer problem by(2p)
solving a number of linear programs. Formulate these programs.
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Question 3

(topics in Lagrangian duality)

Consider the problem to find

f ∗ := infimum
x

f(x), (1)

subject to gi(x) ≤ 0, i = 1, . . . , m,

x ∈ X,

where f : R
n → R and gi : R

n → R, i = 1, 2, . . . , m, are given functions, and
X ⊆ R

n.

Consider also the Lagrangian dual problem to find

q∗ := supremum
�
≥0m

q(µ), (2)

where
q(µ) = infimum

x∈X
L(x, µ),

and the function L : R
n × R

m → R is defined by

L(x, µ) = f(x) +

m
∑

i=1

µigi(x).

a) Establish that the optimization problem (2) is a convex problem.(1p)

b) Suppose that all the functions f and gi, i = 1, 2, . . . , m, are continuous and(1p)
that X is nonempty, closed and bounded. Establish that the function q is
finite on R

m.

c) Take as an example f(x) := x, m = 1 and g1(x) = 1
2
x2, and X := R. What(1p)

is the optimal primal solution (if any)? What is the optimal dual solution
(if any)? Letting Γ := f ∗ − q∗ denote the “duality gap” of the problem,
what is the value of Γ in this instance?
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Question 4(3p)

(complementarity slackness theorem)

Consider the primal–dual pair of linear programs given by

maximize cTx (1)

subject to Ax ≤ b,

x ≥ 0n,

and

minimize bTy (2)

subject to ATy ≥ c,

y ≥ 0m.

Theorem 1 (Complementary Slackness Theorem) Let x be a feasible solution to
(1) and y a feasible solution to (2). Then x is optimal to (1) and y optimal to
(2) if and only if

xj(cj − yTA·j) = 0, j = 1, . . . , n, (3a)

yi(Ai·x − bi) = 0, i = 1 . . . , m, (3b)

where A·j is the jth column of A and Ai· the ith row of A.

Prove this theorem. If you wish to refer to other theorems from The Book in
your proof, then state (but do not prove) those theorems, as they apply to the
problem given.

Question 5

(quadratic programming)

a) Consider the quadratic problem:(1p)

minimize xTHx,

subject to Ax = b,
(QP)

where H ∈ R
n×n is symmetric and positive definite, A ∈ R

m×n has full
row rank, x ∈ R

n, and b ∈ R
m. Set up the KKT-conditions and find the

optimal Lagrange multipliers.
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b) The Lagrange dual problem to (QP) is also a quadratic problem. State the(1p)
(quadratic) dual problem and show that the dual solution is identical to
the Lagrange multipliers in problem a).

c) Let Z ∈ R
n×(n−m) be the null-space matrix to A in (QP), i.e., AZ =(1p)

0m×(n−m). Assume H is neither positive definite nor positive semidefinite,
but that ZTHZ is positive semidefinite. Is a local optimal solution in (QP)
a global optimal solution? Answer true or false, and motivate your answer!

Question 6(3p)

(the Frank-Wolfe algorithm)

Consider the problem

minimize 1
2
x2

1 −
1
2
(x2 − 1)2,

subject to x1 ≤ 2,

0 ≤ x2 ≤ 2,

1 − 4x1 ≤ x2 ≤ 1 + 4x1.

Start at x0 = (1, 1)T and perform one(!) complete iteration with the Frank-Wolfe
algorithm. Is the resulting vector x1 a KKT-point? Is it a local minimum? Is it
a global minimum? Motivate your answers!

Question 7

(nonlinear optimization solves interesting problems)

a) Fermat’s Last Theorem states that there are no solutions in the positive(1p)
integers of the equation

xn + yn = zn,

for n ≥ 3. Re-state this problem as a continuous nonlinear program, whose
optimal solution reveals the answer to the above question.

b) Show that for any symmetric and positive definite matrix A ∈ R
n×n there(1p)

exists a positive number c such that

xTAx ≥ c‖x‖2, x ∈ R
n.
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c) An n × n matrix A is said to be invertible if there exists for each vector(1p)
y ∈ R

n a unique vector x ∈ R
n such that Ax = y. (Then, there is a unique

n × n matrix A−1 such that A−1y = x precisely if Ax = y. The matrix
A−1 is then denoted the inverse of A.)

Show that if A is a positive definite and symmetric n×n matrix then A is
invertible.

Good luck!
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Question 1

(the simplex method)

a) To transform the problem to standard form, first replace the free variable(2p)
x1 with the non-negative variables x+

1 and x−

1 such that x1 = x+
1 − x−

1 .
Then change sign on the inequality constraint and substract a slack variable
s1 ≥ 0. A BFS cannot be found directly, hence begin with a phase 1 problem
using artificial variables a1, a2 ≥ 0 in both constraints. The objective is to
minimize a1 + a2. Start with the BFS given by (a1, a2) in the basis. In
the first iteration of the simplex algorithm, x−

1 is the only variable with
a negative reduced cost (−4), and is therefore the only eligable incoming
variable. The minimum ratio test shows that a2 should leave the basis. In
the next iteration, s1 is the only variable with a negative reduced cost (− 1

3
)

and is chosen as the incoming variable. The minimum ratio test shows that
x3 should leave. No artificial variables are left in the basis, and we can
proceed to phase 2.

The reduced costs in the first iteration of the phase 2 problem are

c̃T
(x+

1
,x2,x3)

= (0, 1, 1) ≥ 0,

and thus the optimality condition is fulfilled for the current basis. We have
x∗

B = (5, 2)T, or, in the original variables, x∗ = (x1, x2, x3)
∗ = (−2, 0, 0)T,

with the optimal value z∗ = 2.

b) The dual to the LP is given by(1p)

maximize w = 2x1 − y2,

subject to − y1 + 3y2 = −1,

− 2y1 + y2 ≤−1,

− y1 ≤ 0,

y1 ∈ R (free),

y2 ≤ 0.

The primal problem has an optimal solution. Then, from strong duality, so
does the dual problem. Add a slack variable y3 ≥ 0 in the second constraint
and let the dual optimal solution be y∗. There cannot exist a solution u

to the given system, since if that would be the case, then y∗ + u would be
feasible in the dual with a larger objective value (from the third row in the
system). This is a contradiction to y∗ being optimal.
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Question 2

(modelling)

a) One possibility is the following formulation:(1p)

min f(x, y),

s.t. xj(1 − xj) = 0, j = 1, . . . , n, (NLP)

Ax ≤ b,

yi ≥ 0, i = 1, . . . , m.

b) Two problems must be solved. The optimal solution to MIP is given by the(2p)
solution to the problem with the least optimal value. That is, the optimal
value of MIP is

z∗ = min{z∗0 , z
∗

1},

where

z∗0 = min f(x, y),

s.t. x = 0, (P0)

Ax ≤ b,

yi ≥ 0, i = 1, . . . , m,

and

z∗1 = min f(x, y),

s.t. x = 1, (P1)

Ax ≤ b,

yi ≥ 0, i = 1, . . . , m.

Question 3

(topics in Lagrangian duality)

a) See The Book, Theorem 6.4.(1p)
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b) Under the assumptions on X, for any vector µ ∈ R
m the function L(·, µ) is(1p)

weakly coercive with respect to X (see The Book, Definition 4.5). By the
continuity assumptions on f and gi, i = 1, . . . , m, L(·, µ) is also continuous.
Hence, Weierstrass’ Theorem 4.7 applies.

c) x∗ = 0; the dual problem has no optimal solution; however, f ∗ = q∗ = 0,(1p)
whence the duality gap Γ = 0.

Question 4(3p)

(complementarity slackness theorem)

We first establish that if the system (3) is satisfied at (x, y) then the pair (x, y)
is primal–dual optimal in (1), (2). By assumption, x (respectively, y) is a fea-
sible solution to the primal (respectively, dual) problem. By the Weak Duality
Theorem 10.5, then, cTx ≤ bTy. The system (3) implies that in fact equality
holds. This immediately, by the Corollary 10.6 to the Weak Duality Theorem,
implies that the pair (x, y) must be optimal.

Suppose then that the pair (x, y) is primal–dual optimal in (1), (2). Then,
cTx = bTy holds, by the Strong Duality Theorem. In the string of inequalities

cTx ≤ yTATx ≤ bTy

provided by the Weak Duality Theorem 10.5, equality then must hold throughout.
From the resulting two equalities then follow (3).

Question 5

(quadratic programming)

a) The KKT-conditions are:(1p)

2Hx + ATλ = 0n

The problem is a convex problem with linear constraints, so a feasible so-
lution which fulfills the KKT-conditions is a global optimal solution. Since
H is postive definite and hence invertible, we have:

x∗ = −1
2
H−1ATλ,
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and

Ax∗ = b ⇒ −1
2
AH−1ATλ = b.

Since A has full row rank, AH−1AT is invertible, and so

λ∗ = −2(AH−1AT)−1b.

b) The dual function is found by minimizing the Lagrangian for each λ. So(1p)

x∗(λ) = −1
2
H−1ATλ,

which gives

q(λ) = L(x∗(λ), λ) = −1
4
λTAH−1ATλ − λTb.

In the dual problem, we want to maximize the dual function. Since we have
equality constraints in the primal, we have no bounds on the dual variables:

maximize q(λ) := − 1
4
λTAH−1ATλ − λTb. (Dual QP)

The dual problem is a convex unconstrained problem, and a dual optimal
solution is therefore found by setting the gradient of q to zero, which yields
λ∗ = −2(AH−1AT)−1b.

c) Let x̂ be a feasible solution, i.e., Ax̂ = b. Then x = x̂ + Zp, p ∈ R
n−m is(1p)

also a feasible solution, and (QP) is equivalent to:

minimize
p∈

�
n−m

pTZTHZp + 2pTZTHx̂ + const.

This is an unconstrained problem with a pos. semidef. Hessian, and hence
it is a convex problem. A local optimal solution is a global optimal solution.

Question 6(3p)

(The Frank-Wolfe algorithm)

Since the objective function is nonconvex, we cannot provide any lower bounds
from the subproblem solutions. An upper bound is f(x0) = 0.5. At x0 = (1, 1)T,
∇f(x0) = (1, 0)T; y0 = (0, 1)T; argminα∈[0,1] ϕ(α) = 1, where ϕ(α) = f(x0 +

α(y0 − x0)); x1 = (0, 1)T; ∇f(x1) = (0, 0)T. A new upper bound is f(x1) = 0.
The vector x1 is a KKT-point (set all Lagrange multipliers to zero). It is not
a local minimum, however, since for example x(t) = x1 + (t, 4t)T is feasible for
0 ≤ t ≤ 0.25, and for t > 0, f(x(t)) = − 15

2
t2 < f(x1). [There are two global

minima: x∗ = (0.25, 0)T and x∗ = (0.25, 2)T.]
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Question 7

(nonlinear optimization solves interesting problems)

a) Let ε > 0 be any small enough number. The optimization problem is to(1p)
find

f ∗ = minimum
(x,y,z,n)∈

�
4
+

f(x, y, z, n) := (xn + yn − zn)2,

subject to sin πx = sin πy = sin πz = sin πn = 0,

xyz ≥ ε,

n ≥ 3.

If f ∗ > 0 then Fermat’s Last Theorem has been proved. (Which it already
has by other means.)

b) Consider the problem to(1p)

minimize
x∈

�
n

f(x) := xTAx,

subject to ‖x‖ = 1.

An optimal solution, say x∗, exists due to Weierstrass’ Theorem, as the
sphere is non-empty, closed and bounded. For each non-zero vector x ∈ R

n,
the vector ‖x‖−1x is a feasible solution; hence, ‖x‖−2xTAx ≥ (x∗)TAx∗ =:
c.

c) Choose y ∈ R
n aribtrarily. To prove existence and uniqueness of a solution(1p)

to the equation Ax = y, consider the minimization of f(x) := 1
2
xTAx −

yTx over x ∈ R
n.

The function f is coercive on R
n, whence Weierstrass’ Theorem applies;

the problem has an optimal solution. As it is unconstrained, we know
that stationarity is a necessary condition, so we set the gradient of f to
zero: ∇f(x) = Ax − y = 0n, and so we know that Ax = y holds. To
establish uniqueness, we may observe that Ax1 = Ax2 = y implies that
A(x1 − x2) = 0n and hence that (x1 − x2)TA(x1 − x2) = 0. By positive
definiteness this implies that x1 = x2. We are done.


