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Question 1

(The Simplex method)

Consider the following linear program:

minimize z =2x1

subject to x1 −x3 = 3,

x1 −x2 −2x4 = 1,

2x1 +x4 ≤ 7,

x1, x2, x3, x4 ≥ 0.

a) Solve this problem by using phase I and phase II of the Simplex method.(2p)

Aid: Some matrix inverses that might come in handy are





1 1 0
0 1 0
0 2 1





−1

=





1 −1 0
0 1 0
0 −2 1



 ,





0 1 0
−2 1 0
1 2 1





−1

=





0.5 −0.5 0
1 0 0

−2.5 0.5 1



 ,





1 1 0
0 1 −2
0 2 1





−1

=





1 −0.2 −0.4
0 0.2 0.4
0 −0.4 0.2



 ,





0 1 0
−1 1 0
0 2 1





−1

=





1 −1 0
1 0 0
−2 0 1



 ,





0 1 0
−1 1 −2
0 2 1





−1

=





5 −1 −2
1 0 0
−2 0 1



 .

b) If a primal LP is infeasible, what can you say about its LP dual?(1p)

Question 2(3p)

(the KKT conditions)

Consider the problem to find

f ∗ := infimum
x

f(x),

subject to gi(x) ≤ 0, i = 1, . . . , m,

where f : R
n → R and gi : R

n → R, i = 1, 2, . . . , m, are given differentiable
functions.
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a) State the KKT conditions regarding locally optimal solutions to this prob-(1p)
lem.

b) Assume that there are two locally optimal solutions, x1 and x2, to the(1p)
problem at hand. Suppose that the feasible set at x1 satisfies the linear
independence constraint qualification (LICQ). Does the vector x1 satisfy
the KKT conditions? Does the vector x2 satisfy the KKT conditions?

c) Assume instead that there are two vectors, x1 and x2, both satisfying the(1p)
KKT conditions. Assume also that these are the only KKT points. Suppose
that the feasible set, at x1, satisfies the linear independence constraint
qualification (LICQ). Further, assume that there exists at least one locally
optimal solution to the given problem. In terms of local or global optimality,
what can be said about the vectors x1 and x2?

Question 3

(short questions on different topics)

a) Motivate whether the polyhedron in R
5 described by the system(1p)

x1+ 2x2− x3− 2x4+4x5 = 0,

2x1− x2+2x3+3x4+ x5 = 4,

x1 , x2 , x3 , x4 , x5 ≥ 0,

has or has not an extreme point in (1, 0, 1, 0, 0)T.

b) Consider the unconstrained minimization of a C2 function f : R
n → R.(1p)

Suppose that, at xk, ∇f(xk) 6= 0n. In the Levenberg–Marquardt modifica-
tion of Newton’s method, the Newton equation for determining the search
direction p

k
,

∇2f(xk)pk = −∇f(xk),

is modified, whenever necessary, such that a multiple γk > 0 of the unit
matrix is added to the Hessian in order to make the (modified) Newton
equation uniqely solvable. Show that this modification of the search direc-
tion always yields a descent direction.
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c) Consider the problem to(1p)

minimize f(x),

subject to gi(x) = 0, i = 1, . . . , m,

x ∈ X,

where f and gi, i = 1, . . . , m are convex functions and where X ⊆ R
n is a

convex set. Is it true that each local minimum also is a global minimum?
If so, motivate carefully. If not, present a counterexample.

Question 4(3p)

(the separation theorem)

Given a closed and convex set C ⊂ R
n and a vector y ∈ R

n that does not belong
to C, the separation theorem states a result on the existence of a separating
hyperplane. State the separation theorem precisely, and establish its correctness
with a proof.

Question 5

(LP duality and derivatives)

Consider the LP problem to find

v(b) := minimum
x∈

�
n

cTx,

subject to Ax = b, (1)

x ≥ 0n,

where c ∈ R
n, A ∈ R

m×n, and b ∈ R
m.

a) Establish that the function v is convex.(1p)

b) Suppose that locally around the vector b, v is finite; that is, suppose that the(2p)
LP problem (1) has finite optimal solutions for all right-hand side vectors
close to b. Suppose, further, that for the given value of b, y∗ ∈ R

m is an
optimal solution to the corresponding LP dual problem. Prove that y∗ is a
subgradient of v at b. In particular, supposing that y∗ is the unique optimal
solution, establish that then v is differentiable at b, and ∇v(b) = y∗.
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Question 6(3p)

(modelling)

Load balancing is a technique used to spread work between computers in order
to get optimal resource utilization and decrease computing time.

You are about to numerically solve a partial differential equation, which has been
discretized on a computational mesh, consisting of n elements. The amount of
work should be distributed among a set of computers. In more detail, the elements
of the computational mesh need to be assigned to the different computers. The
amount of work per element is η flops (floating point operations). Obviously, an
element can only be assigned to one computer.

Edge

Element

To construct the final solution, the computers need to communicate with each
other. The amount of work for communication depends on the boundary between
the elements of the different computers. For each edge between two elements
assigned to two different computers, the amount of work is ρ flops for each of
the two computers. The communication between the computers can only be
done after all have completed the work on the elements. This means that if one
computer finishes early with the elements, it has to wait for the others.

For the sake of simplicity, assume that you only have two computers. Both can
do ν flops per second. You have access to a list of all elements in the mesh,



EXAM
TMA947/MAN280 — OPTIMIZATION, BASIC COURSE 5

as well as a list of all m edges between elements. For example, the list can be
represented by a m-by-2 matrix E, where each row of E contains two indices to
elements sharing an edge.

Your job is to formulate an optimization problem which assigns the elements
to the two computers, so that you minimize the computing time (this includes
both the work on the elements and the communication work). Your optimization
problem can contain continuous, integer or binary variables, but the constraints
and the objective function must be linear.

Question 7(3p)

(Lagrangian Duality) By studying the non-linear program to

minimize z =

n
∑

i=1

x2

i
,

subject to

n
∑

i=1

xi = b,

where b > 0, use Lagrangian duality theory to derive the (special case of the
Cauchy-Schwarz) inequality

n

n
∑

i=1

x2

i
≥

(

n
∑

i=1

xi

)2

.

Show also that equality holds if and only if x1 = x2 = . . . = xn.

Good luck!
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Question 1

(The Simplex method)

a) By introducing a slack variable x5 and two artificial variables a1 and a2, we(2p)
get the Phase I problem to

minimize w = a1 +a2

subject to x1 −x3 +a1 = 3 ,

x1 −x2 −2x4 +a2 = 1 ,

2x1 +x4 +x5 = 7 ,

x1 , x2 , x3 , x4 , x5 , a1 , a2 ≥ 0 .

Let xT
B = (a1, a2, x5) and xT

N = (x1, x2, x3, x4) be the initial basic and
nonbasic vector. The reduced costs of the nonbasic variables are

cT
N − cT

BB−1N = (−2, 1, 1, 2),

which means that x1 is the entering variable. Further, we have

B−1b = (3, 1, 7)T,

B−1N 1 = (1, 1, 2)T,

which gives

argminj:(B−1N 1)j>0

(B−1b)j

(B−1N 1)j

= 2,

so a2 is the leaving variable. The new basic and nonbasic vectors are xT
B =

(a1, x1, x5) and xT
N = (a2, x2, x3, x4), and the reduced costs are

cT
N − cT

BB−1N = (2,−1, 1,−2),

so x4 is the entering variable, and

B−1b = (2, 1, 5)T,

B−1N 4 = (2,−2, 5)T,

which gives

argminj:(B−1N 4)j>0

(B−1b)j

(B−1N 4)j

= 1,

and thus a1 is the leaving variable. The new basic and nonbasic vectors are
xT

B = (x4, x1, x5) and xT
N = (a2, x2, x3, a1), and the reduced costs are

cT
N − cT

BB−1N = (1, 0, 0, 1),
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so xT
B = (x4, x1, x5) is an optimal basic feasible solution of the Phase I

problem. Since w∗ = 0, xB is a basic feasible solution of the Phase II
problem to

minimize z = 2x1

subject to x1 −x3 = 3 ,

x1 −x2 −2x4 = 1 ,

2x1 +x4 +x5 = 7 ,

x1 , x2 , x3 , x4 , x5 ≥ 0 .

If xT
B = (x4, x1, x5) and xT

N = (x2, x3), we get the reduced costs

cT
N − cT

BB−1N = (0, 2).

This means that xB is an optimal basic feasible solution for the Phase II
problem, and we are done! x∗ = (3, 0, 0, 1)T and z∗ = 6.

b) If the primal is infeasible, the dual cannot have an optimal solution. Thus(1p)
it is either infeasible or unbounded.

Question 2

(the KKT conditions)

a) See the Book, system (5.9).(1p)

b) The vector x1 satisfies the KKT conditions (5.9).(1p)

c) Nothing. (Under the conditions given, there may be optimal solutions that(1p)
do not satisfy the KKT conditions.)

Question 3

(short questions on different topics)

a) Yes it is. (1, 0, 1, 0, 0)T is feasible and the columns of A corresponding to(1p)
the positive entries are linearly independent.
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b) By multiplying with pk from the left we get(1p)

pT
k (∇2f(xk) + γkI

n)pk = −pT
k ∇f(xk).

Since γk is chosen such that ∇2f(xk) + γkI
n is positive definite [that is,

uT(∇2f(xk) + γkI
n)u > 0 holds for all u ∈ R

n \ {0n}], it follows that
pT

k ∇f(xk) < 0 and pk is therefore a direction of descent.

c) It is not true. Consider for example the problem to(1p)

minimize x1,

subject to x2
1 + x2

2 − 1 = 0,

x ∈ X = {x ∈ R
2 | x1 + x2 ≥ 0 },

which has the two local minima
(

1√
2
,− 1√

2

)

and
(

− 1√
2
, 1√

2

)

, of which only
the latter is a global minimum.

Question 4(3p)

(the separation theorem) See the Book, Theorem 4.28.

Question 5

(LP duality and derivatives)

a) If v(b) is finite, then by LP duality, we have that(1p)

v(b) := maximum
y∈�

m
bTy,

subject to ATy ≤ c, (1)

y free.

At least one maximum in (1) is attained at an extreme point of the dual
polyhedron. Therefore, we can write v(b) = maximumk∈K bTyk, where
{yk}k∈K is the (finite) set of extreme points of the dual polyhedron. The
convexity of v follows simply by using the definition: for λ ∈ (0, 1) and
arbitrary vectors b1 and b2 in R

m it holds that

max
k∈K

[λb1 + (1 − λ)b2]Tyk ≤ λ max
k∈K

(b1)Tyk + (1 − λ) max
k∈K

(b2)Tyk,
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the inequality being a consequence of the added freedom of choice when
separating the optimization problem on the left-hand side of the inequality
with the two optimization problems in the right-hand side. Hence,

v(λb1 + (1 − λ)b2) ≤ λv(b1) + (1 − λ)v(b2),

and we are done.

b) Consider the following inequality:(2p)

v(p) ≥ v(b) + ξT(p − b), ∀p ∈ R
m,

where ξ ∈ R
m. This inequality is the definition of the vector ξ being a

subgradient of the convex function v at b; it in fact characterizes v as being
convex, whenever it is sub-differentiable. Our task is to establish that this
inequality holds when we let ξ = y∗. Since v(b) = bTy∗ by assumption,
the inequality reduces to stating that

v(p) ≥ pTy∗, ∀p ∈ R
m.

But this is true: by definition, v(p) equals the supremum of pTy over all
feasible vectors y, and y∗ is just one out of all the possible choices of dual
feasible vectors.

Finally, differentiability of v at b is equivalent, given its convexity, to the
existence of a unique subgradient of v at b. From the above it is clear that
if there is only one optimal solution to the problem (1) then that must also
be the gradient of v at b.

Question 6(3p)

(modelling) Introduce the variables:

xi is 0 if element i is assigned to computer 1
and it is 1 if assigned to computer 2. i = 1, . . . , n

yk is 1 if edge k is between to elements assigned to different computers.
It is 0 otherwise. k = 1, . . .m

The computing time for the elements is equal to

max

{

η

ν

n
∑

i=1

xi,
η

ν

(

n −
n
∑

i=1

xi

)}

,
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which can be modelled using an auxilary variable t and linear inequalities. The
optimization problem reads:

minimize z =
ηt

ν
+

ρ

ν

m
∑

k=1

yk

subject to
n
∑

i=1

xi ≤ t

n −
n
∑

i=1

xi ≤ t

xEk,1
− xEk,2

≤ yk , k = 1, . . . , m

xEk,2
− xEk,1

≤ yk , k = 1, . . . , m

x ∈ B
n

y ∈ B
m

t ∈ R

Question 7(3p)

(Lagrangian Duality) Lagrangian relax the contraint to get

L(x, λ) = −λb +
n
∑

i=1

x2
i + λ(

n
∑

i=1

xi − b).

L is differentiable and we find the Lagrangian dual function

q(λ) = min
x∈�

n
L(x, λ)

by setting the gradient of L with respect to x equal to zero (convex unconstrained
problem, function in C1). ∇xL(x, λ) = 0 ⇒ x∗

i = −λ
2
, ∀i. We get q(λ) =

−λb − nλ2

4
.

In the Lagrangian dual problem we wish to maximize q(λ) over R (no sign re-
strictions since the multiplier corresponds to an equality constraint). Also here,
q is differentiable and we set the gradient equal to zero ⇒ λ∗ = −2b

n
(we know

that this is a maximum, since q is always concave) ⇒ x∗
i = b

n
, ∀i.

Thus, for any faesible vector x,

z∗ =
∑

i

(

b

n

)2

=
b2

n
≤
∑

i

x2
i ⇔ b2 ≤ n

∑

i

x2
i ⇔

(

n
∑

i=1

xi

)2

≤ n
∑

i

x2
i .
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The objective function is strictly convex, whence the inequality above holds with
equality iff x∗

i = b
n
, ∀i, i.e., if x1 = x2 = . . . = xn.


